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INTRODUCTION

The following pages have been prepared for use at the U. S.

Naval Academy.

Napier's and Bowditch's Rules have been used in deducing

the formulae, which are generally those used in Bowd. Nav.

Beferences to Trigonometry are to the treatise of Prof. Chau-

venet.

Not seeing any good reason for making distinctive " Sailings"

while still considering the earth's surface as a plane, the author

has taken the liberty of placing them together under the head of

" Common Sailing."

For the method of deducing the equation of "Mercator's

Sailing " the thanks of the author are due to Prof. J. M. Bice,

of the Naval Academy.





CHAPTER I.

DEFINITIONS AND NOTATION.

1. Meridians are great circles of the sphere, passing through

both poles.

2. Suppose a ship to sail so that the line of her keel makes a

constant angle with each successive meridian ; this line is called

the ship's track or loxodromic curve. In old nautical works, the

rhumb line.

3. The constant angle made by this line with each meridian is

called the true course. In the following problems the word

course will be understood to mean true course, and will be

denoted by C.

4. The compass needle, undisturbed by local causes, points to

the magnetic pole, and great circles passing through this pole

are called magnetic meridians. The angle which the loxodromic

curve makes with the magnetic meridians is called the magnetic

or compass course. Compass course must be reduced to true

course previous to the solution of nautical problems in which

course is considered.

5. The portion of the loxodromic curve considered in any

problem, is called the distance. It is necessarily the number of

miles passed over by the vessel on the course which belongs

with it.

6. Latitude is angular distance north or south of the equator,

measured in degrees, minutes, etc., of a great circle, denoted

hjL.

7. Difference of latitude, denoted by I, is the portion of a

meridian included between two parallels of latitude.
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8. Longitude is the angular distance between any meridian

and a fixed or prime meridian. The prime meridian is usually

that of Greenwich. It may be considered as angle at the pole,

of which the corresponding portion of the equator is a measure.

It is denoted by X.

9. Difference of longitude is angle at the pole, or the cor-

responding arc of the equator between any two meridians, rep-

resented by D.

10. Departure is the angular distance between any two merid-

ians measured on any parallel of latitude. As parallels of lati-

tude vary in size, the units (degrees, etc.) become smaller. If,

however, we have departure determined in angular units of its

own circle, the corresponding difference of longitude would be

the same. Departure is, however, found in the linear value of

units of a great circle of the sphere. In order, then, to determine

the corresponding difference of longitude, it will be necessary to

know first the relation between the units

of any parallel of latitude and the corre-

sponding units of the equator.

11. To find these relations, we have in

Fig.l

ED = D
A B =p the departure in Lat. L.

D and p are similar arcs of circles, and

therefore are to each other as their radii.

Fig. 1.

P= Dr
1R

CA0 = A0JD=L -jf= cos L

which substituted in above gives

p = D cos L or

JD =jj sec L.

which give the required relations.



COMMON SAILING.

Having therefore the departure expressed in units of the equa-

tor (in nautical miles), we find the corresponding difference of

longitude by multiplying it by the secant of the latitude in which

the departure is situated.

COMMON SAILING.

12. For such small distances as an ordinary day's run at sea,

it is customary to consider the small portion of the earth's sur-

face passed over as a plane. The difference of latitude and de-

parture corresponding to the course and pIG 2

distance sailed are determined by the solu-

tion of a plane right angled triangle.

In Fig. 2

the difference of latitude I = d cos C
the departure p = d sin C

p = Z tan G

This is sufficientlv accurate for small

distances.

These equations are employed in what is called by navigators
41 working dead reckoning." Their computation is facilitated by

the use of Tables I. and II. Bowd., which are tables for the so-

lution of any plane right triangle, calling the distance hypothenuse,

difference of latitude side adjacent, and departure side opposite.

When several courses are sailed, the triangle is solved separately

for each value of C, and the algebraical sum of V, I", V", etc., p',

p", p'", etc., are taken for the whole difference of latitude and the

whole departure.

13. The equations above are strictly true when

d I = d d cos G.

d p = d d sin G.

d p = d I tan C.

The smaller I, d, and p are taken, therefore, the nearer correct

will be the result.

The departure p, formed from the sum of several partial
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departures, is, of course, for different latitudes. It is customary

to assume it upon the middle parallel. That is, the middle lati-

tude is found (in the figure) between each extremity of I and the

departure assumed upon it. The difference of longitude is found

from
I) = p seo. L.

L being this middle latitude,

L == L' + \ I.

L == L'i- \ I.

The difference of latitude found being applied to the latitude

left, with proper sign gives latitude in.

The difference of longitude applied to longitude left, with

proper sign will give longitude in.

14. Several problems arise in Common Sailing which are solved

on the supposition that the triangle is a plane right triangle.

They are solved generally by inspection of Tables I. and II. They

may be solved by logarithms, using some form of the preceding

equations.

The two following are selected as examples :

15. Problem 1. To rind current.

The difference between the latitudes as found by observation

and by " dead reckoning," is taken, and also the difference be-

tween the longitudes as determined in same manner. The
observed position is considered as the correct position, and any

difference in the two positions may be due to current.

The difference of longitude is changed to departure by

p== D cos L.

The course or direction of the set of the current is then deter-

mined by

and its amount or distance by

tan C= p
J

sby

d= .

P
G

d=- I

cos G
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16. Problem 2. To find the course and distance "made
good."

The difference between the latitude left and that arrived at

(by observation) is taken.

The difference between the longitudes is changed, as in pre-

ceding problem, to departure. The same equations are then

solved as before, C being in this case the course made good, and

d the distance made good.

This problem, as we shall see, is more correctly solved by
Mercator's Sailing.



CHAPTER II

MERCATOR'S SAILING.

1. We have, in Common Sailing, considered a small portion of

the earth's surface as a plane. This is sufficiently correct for

small distances as an ordinary day's run. A more rigorous solu-

tion of problems appertaining to the loxodromic curve is neces-

sary.

Fig. 3.

In Fig. 3, E is a portion of the loxodromic curve. E Ea
parallel of latitude passing through origin, E y a great circle of

the sphere through the same point, p equals P E the co-Lat. of

E. P E 0=^ C, the course.

Decompose s along p and <£
3
and we have

Cot C^~-
d<p
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X and </> have a common tangent at the point E, and as d X and

3 (p denote angular velocities, they are to each other as the cor-

responding radii.

. •. d(f> = d X cos L, or d
<f>
= d . X sin p.

d p _ dp
and cot C= r^-=

d </> sin p d X

P*
\d.p
sin J p cos \ p

p2

(a.)

Dividing numerator and denominator by cos J p and integra-

ting first member.

f
Pi Pi

Cot C ^-X2)=- wtjpd.hp = r j tan j

/pi Pi

(b.)

But

- log tan | p = log cot \ p = log cot \ (90© - £) = log tan (45°+

| Z) which substituted in (6) gives

Cot C (X
x -X,) = log tan (45° + \L\ (c.)

the limits A and A changing for those ofpx and^) 2 .

j - , rn tan (45°+ | A)
& tan ( 45°+ J A)

If i 2
= 0, or the point E be at the equator

X,-X 2
= D = tan Clog tan (45° + J £).

In this the logarithm isNaperian, andD is in angular measure.

To change to the common system of logarithms, we multiply by

the reciprocal of the modulus,—= 2.302585093 ; and to change
m

D for the globe, multiply by the radius of the earth in minutes

= 3437.74677, and we have

D = 7915.70447 log tan (45° + J L) tan C.
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5>. The relation existing between D and C in this expression is

FIG . 4 #
that of an angle and side oppo-

site in a plane right triangle and

may be represented as in Fig. 4

in which

D is the difference of longi-

tude. C is the course, and the

side F = 7915.70447 log tan.

(45° + J L) . F is called the

Augmented Latitude, and will be

represented by 31.

In the expression

M= 7915.70447 log tan (45° -f \ L)

different values of L may be assumed, and the corresponding

augmented latitude computed and tabulated. Table III. Bowd.
is such a table, computed for each minute of L from 0° to 84°.

3. From the foregoing, we see that any portion of the loxo-

dromic curve, or ship's track, may be represented by a straight

line, as E F, in Fig. 4. Charts constructed on these principles

are called Mercator's Charts. By means of a Table of Aug-

mented Latitudes they are easy to construct, and possess the

advantage of showing the ship's track by a straight line, and

the course being represented by the angle which this line makes

with any meridian.

4. Problem 1.—A ship sails from a latitude 1/ until she
arrives at a latitude L", upon a given course C, find the

difference of longitude D.

; For the difference of longitude from where the loxodromic

curve intersects the equator, to its intersection with the meridian

of L', we have
D' = 31' tan C,

and to the second latitude

D"= 31" tan C,

D = D" - D'= {31"-M) tan C.

Find, from a table of augmented latitudes, or by computation,

M" and M' corresponding to L" and L respectively, and take
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their difference. This is called the augmented difference of lati-

tude. Representing it by m, we have

D= m tan G

5. Problem 2.—Given the latitudes and longitudes of two
places ; find the course, distance, and departure.—(Bowd., p.

79, Case!)

L' and L" being given, find M' and M" by computation, or by
Table III., Bowd.

l= L" - L', m = M'-M D = X"-X\

by Mercator's Sailing

Tan (7=—m
and from Common Sailing

d = I sec G
p = I tan G

6. In Common Sailing we find the difference of longitude by
taking the departure upon the middle parallel of latitude. The
proper parallel is one situated nearer the pole. Strictly the

departure should be taken upon

L m = \ (L' + L") + aL,

To find A L (see Tables, Bowd., p. 76, and Stanley, p. 338.)

In Common Sailing we have,

(a.)CosX w =|-

From Common Sailing

2>= I tan G,

and from Mercator's

D = m tan G

which substituted in (a) gives

Cos Lm= I

m
.-. l-2sin 2!i:m= m
Sin J Lm =

/m-l
* on

(b.)

(e.)
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For different values of L' + L" we may find /= L"—L'
The middle latitude used in Common Sailing, is

Lm being found by (c) we have



CHAPTER III.

GREAT CIRCLE SAILING.

1. The shortest distance between any two points on the globe,

is the arc of a great circle joining them. In running long dis-

tances, it is best to follow the arc of a great circle. Strictly

speaking, this would be impossible, as the course would have to

be changed each instant. It is customary to determine certain

points of the great circle, and run from point to point on a loxo-

dromic curve. Circumstances of wind and weather must govern

the navigator in choosing his route. Most of the convenient

great circle routes have already been computed. A knowledge

of Great Circle Sailing is necessary, however, in order to know
which tack to put the ship upon in case of adverse winds.

2. Problem 1.—The latitudes and longitudes of two
places being given, to' find distance and course from one or

both of them.

In Fig. 5, we have given

P A = 9Q°-L'
P B = 90°-L"

A P B = A = A"-A'
P A B = C, the course from A
P B A = C, the course from B

Letting fall the perpendicular B

B K and representing P K by 0, we have

By Napier's Eules

AK= 90°-(i' + 9)

Cos A = tan </> tan L"
Tan = cos A cot L"
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By Bowd. Kules, or by Napier's Kules and eliminating the per-

pendicular,

Cot C = cos (L' -f- 0) cot X cosec (j> (b.)

and in triangle BAR,
Cot d = cos C tan {L'-\- <p) (c.)

(a), (b) and (c) furnish the required solution, giving, however,

the course from A. To find course from B, change the notation.

3. Problem 2.—To find the highest latitude of the great

circle, and longitude of this point from either place.

In Fig. 6, let fall the perpendicular P V,

Fig. 6.

This perpendicular intersects the

great circle at its highest latitude.

We will have by Nap. Kules :

Sin L' = cot *'" cot G
Cot X'"= tan C sin L (a.

)

Cos X'" = cot L tan L'

Cot L = cos X'" cot L' [b.)

(a) and {b) solve the problem, giving X'" from A. To find the

longitude we have

4. Problem 3.—To find latitudes and longitudes of inter-

mediate points of the great circle.

In Fig. 6, assume longitudes at pleasure on each side of the

vertex.

Suppose we assume them 5°, 10°, 15°, etc., upon each side of

yertex.

We will have
Cos 5° = cot L tan Lx

Cos 10° = cot L tan Z,

etc.

Tan Lx
= tan L cos

Tan I.= tan L cos

etc.

15 ° la
10°)
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Equations (a) give the required solution.

5. In Problem 1, if the perpendicular fall without the triangle,

will be greater than (90°-Z') and K A ==-
<f> _(90°-Z').

The course is determined in degrees and minutes, and is meas-

ured from the meridian of L'. Attention must be paid to the

signs of and X. The distance is also found in degrees and

minutes of the great circle. Reduce to minutes for distance in

nautical miles.

6. Having found the latitudes and longitudes of as many
points of the great circle as are desired, plot them on chart, and

by hand trace through these points the curve ; owing to the

principles of construction of a Mercator's chart, this will be an

irregular curve except when coincident with the equator or a

meridian.



CHAPTER IV.

TIME.

1. Time is the hour angle of some heavenly body whose
apparent diurnal motion is taken as a measure.

The instant when any point of the celestial sphere is on the

meridian of the observer is called transit,

2. Sidereal time is the hour angle of the first point of Aries

(y). The instant of its transit is sidereal noon, h.

Eight ascension is the angular distance of a heavenly body
from the first point of Aries reckoned towards the east. Hence
when any heavenly body is on the meridian of a place its B. A.=
the sidereal time.

As the earth revolves 360° in order to bring any meridian two

successive times under (y), we can find the space passed over in

one hour by dividing 360 by 24, equals 15°. Hence when the

H. A. of y is 15° the sidereal time is 1 h. The interval between

two successive transits of y is the sidereal day. Evidently the

interval between two successive transits of any fixed point over

the same meridian would be equal in length to a sidereal day.

3. Apparent time is the hour angle of the true sun.

The true sun has motion in R. A., and therefore is not a fixed

point in the celestial sphere. Its motion is not uniform in the

ecliptic, and this of itself would tend to make apparent solar

days irregular in length. Besides, as the plane of the ecliptic is

inclined to the plane of the equator, the true sun's apparent

daily path is not perpendicular to the plane of the meridian ; in

other words, the true sun approaches the meridian at a constantly

varying angle ; this also tends to cause irregularity of apparent

time. Instruments cannot be constructed to keep apparent time,
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and astronomers have resorted to the following device in order

to obtain a uniform 'time.

4. Mean time is the hour angle of a mean sun (supposed)

which has for its annual path, the celestial equator. A first

mean sun is supposed to move in the ecliptic at a uniform rate,

so as to return to perigee and apogee with the true sun. This

obviates the first difficulty mentioned. The changes in longi-

tude of this mean sun are equal in equal times, but equal changes

in longitude do not give equal changes in E. A. So a second

mean sun (sometimes called simply the mean sun) is supposed to

move in the equator at the same rate that the first moves in the

ecliptic, and to return to the vernal equinox with it. The time

therefore denoted by this second mean sun, although not equal

to sidereal time, is perfectly uniform in its increase. The daily

difference will evidently be equal to the daily increase in the

right ascension of this mean sun = 3 m. 56 s. The instant of

transit of the true sun over the meridian of the observer is

called apparent noon. The instant of transit of mean sun is

mean noon.

5. The equation of time is the difference between apparent

and mean time. It is also the difference of the hour angles of

true and mean suns. It is also the difference between the right

ascensions of the true and mean suns. From what has preceded,

we know that the first mean sun's longitude, or, as it is some-

times called the true sun's mean longitude, is equal always to the

right ascension of the mean sun. Hence the equation of time is

equal to the difference between the true suns right ascension and its

mean longitude.

6. Astronomical time commences at noon or Ohrs., and is

reckoned to the westward 24 hrs. An astronomical day (apparent

or mean) is the interval between two successive transits of the

sun (apparent or mean).

7. Civil time commences at midnight 12 hrs. before the

commencement of astronomical time, and is divided into two

periods of 12 hrs. each, marked A. M. and p. m.
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7. To convert civil into astronomical time.

Remember that the civil day of same date commences 12hrs-

before the astronomical day.

9. Time at different meridians.

It is evident that as any time at one meridian is the H. A. of

the heavenly body or point whose motion is considered, to find

the corresponding time at any other meridian it is only necessary

to add or subtract the angle between the two meridians. In

Nautical Astronomy it is generally necessary to convert the given

local time to the corresponding Greenwich time, in order to in-

polate quantities from the Nautical Almanac, which are com-
puted for the meridian of Greenwich.

10. Having given the local time of any meridian, to find

the corresponding Greenwich time.

To the local time add the longitude if west, and subtract if

east ; the result will be the corresponding Greenwich time of the

same kind as the given local time. Conversely, the differ-

ence between the time at two meridians (of the same kind) will

be the difference of longitude expressed in time. Remembering
that lh. = 15°, this may readily be converted to arc.

11. To convert apparent time, at a given meridian, into the

mean time, or mean into apparent.

If M= the mean time

A = the corrresponding time

E= the equation of time

we have from Art. 5
M - A = E
M=A + E
A = M- E

JE'may be + according as the apparent is greater or less than

the mean time. E is found on Page II. of the American Nautical

Almanac for Greenwich Mean Noon, and is to be interpolated to

the instant of the given Greenwich mean time. Where the given

Greenwich time is apparent time, then E must be taken from

Page I.
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12. To change sidereal into solar time it will be first ne-

cessary to know the relative value of their units.

In consequence of the earth's annual revolution about the

sun, there will be one less transit of the sun across any meridian

than there will be of any fixed point outside of the earth's orbit,

during the period of this revolution.

There are in one year

3662.4222 sidereal days.

365.24222 solar days.

whence we have

1 sid. day = lll'lf^l sol. day= 0.99726957 sol. day,

or 24 hrs. sid. time =23 hrs. 56 m. 4.091 s. solar time. And

1 sol. day= y^owoo sid - d&y— 1.00273791 sid. day.

or 24 h. solar time =24 h. 3 m. 56.555 s. sid. time.

From these relative values Tables II. and III. of the American

Nautical Almanac are computed. The first is for converting an

interval of sidereal time to the corresponding interval of mean
time. The second for changing an interval of mean time into

the corresponding interval of sidereal time.

It is evident that, in Table II., the corrections are nothing

more than the changes in right ascension of the mean sun during

the given intervals of sidereal time. It is this change in right

ascension which causes the different values of the units. In

Table III., the corrections are the changes in right ascension of

the mean sun in the given intervals of mean time.

13. To convert an interval of sidereal time into the cor-

responding interval of mean time.

Enter Table II. with the sidereal interval, as an argument.

Find the change in R. A. of the mean sun and subtract this change

from the given sidereal interval.

14. To convert an interval of mean time into the corre-

sponding interval of sidereal time.

Enter Table III. with the mean time interval, as an argument.
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Find the change of B. A. of the mean sun, and add this change

to the given mean time 'interval.

15. "We have now found a means of changing an interval of one

kind into an interval of another. It is frequently necessary to

find the corresponding time, having given another time. To do

this it will be necessary to be able to find the B. A. of the mean
sun at any instant. The B. A. of the mean sun is given in N. A.

for the instant of Greenwich mean noon (Page II. of the month),

marked " sid. time, or B. A. of mean sun." This being given for

the instant of Greenwich, mean noon must be interpolated to the

instant of Greenwich mean time. Hence we have

16. Given the local mean time at any meridian, to find

the corresponding sidereal time.

Convert the local mean time into Greenwich mean time, by

applying the longitude in time. Enter Table III. of the N. A.,

and find the change in B. A. of the mean sun for the elapsed

Greenwich time ; add this to the B. A. given on Page II. of the

month for the 'preceding Greenwich noon, and result will be the

correct B. A. of mean sun at the instant of time given.

Fig. 7.

Then, in Fig. 7,

y P S= R A mean sun

A P S= HA mean sun or LMT
and APy=HA of y or L ST
B.eneeAPy=APS+yPS,oi

The sidereal time is equal to

the mean time plus the R. A. of

mean sun.

17. Given the local sidereal time, at any meridian, to

find the corresponding mean time.

Convert the local sidereal time into Greenwich sidereal time,

by applying the longitude.

Enter Table II. of the N. A., and find the change in B. A. of

the mean sun for the elapsed Greenwich sidereal time. From
Page III. of the month, take the " mean time of preceding side-

real noon " (which is evidently 24 hrs. minus B. A. of mean sun
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at that instant). Subtract from this the correction obtained from

Table II., and the result is the correct negative R. A. of the mean

sun at the given sidereal instant.

Then, in Fig. (7.),

APy = given L. S. T.

y P S= JR. A. of mean sun, and

AP S= the L. 31. T.

Hence APS=APy-yPS.
We have obtained y P S, however, negatively, and A P S = A

P y + the corrected negative R. A. of mean sun.

The mean time is equal to the sidereal time, minus the B. A. of

mean sun, or plus the negative B. A.

18. Given the apparent time at any meridian, to find

the corresponding sidereal time.

Change apparent to mean time (Art. 11.), and proceed as in

Art. 16, or

Apply longitude to local apparent time, giving Greenwich ap-

parent time.

Find R. A. of true sun on page I., N. A., and correct by means

of given hourly difference to the instant of Greenwich apparent

time.

Then in the Fig. (7.)

y P S= R. A. of true sun

A P S= given L. A. T. and

APy=APS+yPS,ov
The sidereal time is equal to apparent time plus the B. A. of the true

sun,

19. Given the sidereal time at any meridian, to find the
corresponding apparent time.

Proceed as in Art. 17, then change the mean time to apparent

by Art. 11.

20. Given the hour angle of a star, at any meridian, to
find the local mean time.

Find in the N. A. the R. A. of the star. To this apply the H.
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A. of star plus, when west of the meridian, and minus when east.

The result is local sidereal time.

Then proceed as in Art. 17.

21. To find the hour angle of a star at a given meridian

and mean time.

Find the corresponding sidereal time by Art. 16. To this

apply the star's E. A. ; the difference is star's H. A. -f- when the

sidereal time is greater than the K. A., — when K. A. is greater

than sidereal time.

22. Given the hour angle of the moon at any meridian
to find the local mean time.

Apply the H. A. of moon to the longitude of the place, which

gives the longitude of place which has the moon on its meridian.

The N. A., page IV., of the month gives the time of moon's me-
ridian passage at Greenwich, or the angle between the moon and

sun. The hourly difference multiplied by difference in time

(lougitude), and result added to the Greenwich time of passage

when longitude is west, subtracted when east, gives the local

time of meridian passage, or the corrected angle between the

sun and moon. We now have the time at the place which has

the moon on its meridian. Applying H. A. of moon gives the

time at the given meridian.

In Fig. 8

A PM= HAoi moon
A P G + AP M=^ Long, of

meridian P. M. from Green-

wich.

Having found M P S as

stated, AP S = AP M -\-

MP S.

If the Greenwich time be

given and longitude AP G required. Find R A. of moon from

N. A. and correct for Greenwich time, and proceed as in case of

star. Art. 20.
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23. To find the hour angle of the moon at any meridian

and time.

Proceed as in case of star. Art. 21.

24. Given the hour angle of a planet at any meridian, to

find the local mean time.

The N. A. gives the time of meridian passage of each of the

planets over the Greenwich meridian, and the local mean time

may be found as in first of Art. 22.

If Greenwich time be given and not the longitude, proceed as

in second part of Art. 22.

25. To find the hour angle of the sun at a given meridian
and time.

The hour angle of the sun is the L. A. T. Proceed as in Art.

11, for changing mean to apparent time. If the apparent time

be more than 12 hrs., subtracting it from 24 gives the negative

H. A.

26. To find the time of meridian passage of any celestial

body, the longitude of the place or Greenwich time being

given.

It is only necessary to find from the N. A. the E. A. of the

body for the Greenwich time. This E. A. is the sidereal time of

transit, change this sidereal time to corresponding mean time

by Art. 17.

27. Eeference has been made to the American Nautical Al-

manac, and rules given for taking out some required quantities.

There are other quantities frequently required in Nautical

Astronomy, such as

Declination of sun, moon, and planets ; Equation of time,

Semi-diameter, Horizontal Parallax of moon, etc.

In general it is necessary to take out the required quantities

for the nearest Greenwich time to the given time, and interpo-

late in either direction to the given instant of Greenwich time.

Hourly differences are given to facilitate this work. As, how-

ever, the hourly differences themselves change quite materially

in some cases, it may be found necessary to use second differences.
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Formulae have been given to meet each particular case. The
author has found that in general thej are of no practical assist-

ance to the student, and even, in some cases, confusing. One
thing may, however, be advantageously impressed upon the

student, and that is, that almost invariably it is necessary tofirst

obtain the Greenwich time before consulting the Almanac. At sea

this is found from the chronometer, and on shore either by
chronometer, or by applying to the local time of the place the

longitude. When the Greenwich time is apparent time, quantities

pertaining to the true sun must be interpolated from Page I. of the

month. When the time is mean time, then from Page II. Quantities

pertaining to other bodies are invariably given for the Greenwich

mean time, excepting the negative R. A. of mean sun, which is

given for the instant of Greenwich sidereal noon.



NOTATION FOR FOLLOWING CHAPTERS.

L = latitude

d — declination

t = hour angle

p = polar distance = 90° - d

z = true zenith distance = 90° — h

z = apparent zenith distance = 90°— h'

h = true altitude

h' = apparent altitude

Z= azimuth

A = amplitude = 90° -Z

q = position angle, or angle at the body.





CHAPTER V

.

LATITUDE.

1. Latitude is the angular distance of a place on the surface of

the earth, north or south of the equator.

As the celestial equator is in the same plane as the equator,

and celestial meridians in the same planes with corresponding

terrestrial meridians, it is evident that the zenith of an observer

is the same angular distance from the celestial equator that his

place is from the terrestrial equator. Distance north or south

from the celestial equator is called declination. Hence the

declination of an observer's zenith is equal to his Latitude.

2. To find the latitude from the altitude of any heavenly-

body on the meridian, the Greenwich time of the obser-

vation being known.
The observed altitude must be changed to true altitude, by

applying errors of instrument, semi-diameter (if limb of body be

observed), dip. parallax, and refraction. This is necessary in

all observations, and, hereafter, when altitude is mentioned, it is

to be considered as true altitude.

In Fig. 9, let ZHN Q be a projection on the plane of the

meridian of observer.

E Q its intersection with plane of equator.

I

H

its intersection with plane of true horizon.

P P' the prolongation of the axis of the earth.

For the body X on the meridian, we have

EZ=L=ZX + JEX=Z+d = 90°-h + d

for the body X'

EZ=L=ZX' -EX' = Z - d= dO°-h-d.
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These are the two cases where d is north and south, or -f-

ancl — , and less than the latitude,

For the body X",

L=d-Z=d- (90° -/i)

for the body X",

3. Practical Navigators, in order that they may find the lati-

tude instantly upon observation of the sun upon the meridian,

make use of the following forms :

1st. When latitude and dec. are of same name, we have

L = 90° - h + d and h = h' + corr.

£ = 90°-(/i'-f-corr) +d
L= (90°+ d - corr)-

A

7

The portion within parentheses can be computed before the

observation. All that remains to be done is to subtract observed

altitudes, which may be done mentally.

2c?. When lat. and dec. are of different names

L = 90°-h — d

L = 90° -(/i' + corr) - d

L= (90°-d- corr) - h'
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In same way the portion within parentheses may be computed

previous to the observation.

4. To find the latitude from an observed altitude of any-

heavenly body, at any time, the Greenwich time of the

observation being given.

The declination of the body is found from the Greenwich

time. The altitude corrected

and hour angle of the body
found, we then have,

ZM=Z=dO° -h and

MPZ=t= houx angle given,

to find

PZ=90° - L

Let fall the perpendicular M
X, and Z=90°- (0 -f 0') and

if 0"=9O° — 0, <{>"= the decli-

nation of foot of perpendicular,

and as perpendicular may fall

without the triangle

L= $" + <!>'

Cos t = tan d cot 0"

Tan 0" = tan d sec t

Sin d : sin h = sin 0" : cos 0'

sin 6" sin h
Cos 0'

sin d
(2.)

which afford the solution. ' when the perpendicular falls with-

in the triangle is negative.

5. When the body is on the prime vertical, the perpendicular

will fall near Z and 0' = nearly. "When, therefore, the body
is near the prime vertical, 0' becomes very small, and cannot be

determined accurately by its cosine.

0" is marked N or S like the declination, and is in same quad-

rant as t, as the sign of its tangent in (1) is dependent upon that

of sec. t. When t > 6h, 0" > 90°.

When the body has no declination, the perpendicular falls at
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0, and </>" = 0, L = </>'. When d is nearly 0, (1) approaches

the undeterminate form. There are two values of L in the equa-

tion,

Zr = 0" -{- 0', but unless 0'

be very small, the one may be selected which coincides most

nearly to the supposed latitude. When 0' is less than 12 hrs.

use 7 — place tables.

6. To find the effect of an error in the altitude we have

CqS 0' = sin 0" sin ft

(2
.

r
sin d

v
'

Differentiating

a.' j jl» sin 0)" cos ft 7 7— sin a = r =— a ft.

sin a

7 ,. sin 0" cos ft 7 , / v

d 0' = - V^ <2 ft (a.

)

sin a sin 0'

From (2)

cos 0' sin 0"

sin ft sin d

which substituted in (a) gives

d 0' =— cot ft cot 0' tZ ft.

In triangle ZM x of figure we have

cos Z= tan 0' tan ft

hence
sec Z= - cot 0' cot ft

d c/)==d h . sec ^,

substituting small finite differences.

A 0' = A ft sec Z, nearly.

d 0' is the error of 0' due to an error of ft.

The correction to 0' for error of ft would be

A 0' = - A ft sec ^

When the body is on the meridian Z=0, and numerically

A 0' = A ft.

The nearer Z is to 90° the greater will be A 0'.
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7. To find the effect of an error in the time, or hour angle.

We have

Sin h— sin L sin d -\- cos L cos d cos t

= cos L d L sin d — sin L d L cos d cos £ - cos P cos d sin £ d t

j T cos Pcos d sin £ d £ * \

cos 1/ sin <i— sin X cos d cos £

In Fig. 10 we have in triangle P N 31

cos 31 N= cos P # cos P Jf+ sin P lYsin P McosNP 31.

cos NP M= — cos £

and in triangle N 31

P

cos MN= cos P sin d — sin X cos d cos £

which substituted in (a) gives

•, r cos L cop r7 sin £ d t /, xdZ = c^U-Y (6°

and in NZ 31

cos JP AT= cos N Z cos ^if+ sin N Z sin Z 31 cos z"

cos MX= cos 90° sin h -f-
sin 90 Q cos h cos Z

cos 31N— cos /i cos z"

and (b) becomes

in triangle P
%
Z 31

-i T cos L cos d sin 2 d t , sdP = - (c.)
cos A cos Z

cos d : cos /i = sin Z : sin £

cos k sin Z*sm t = -
cos <i

In which z7 is negative, being reckoned from meridian to the

left.

Substituting in (c), reducing, and multiplying 2d term by 15 to

reduce to arc,

d L =—15 tan Z cos L d t

The correction would be (substituting finite differences) nearly

A P=_15 tan Z cos L A t (d.)

When Z= 0, the effect of an error in time is 0.

When Z= 90°, the effect of an error in time is incalculable.
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In using this formula, be careful in correcting the time for

the run between the observations for time and for latitude.

Unless the time is accurately obtained the formula is of but little

use.

8. To find the latitude when it is already approximately

known.
sin h = sin L sin d -\- cos L cos d cos t

-which by (39) and (139) reduces to

cos {L—d) = sin h -f- cos L cos d versin t

L—d == z

cos z= sin 7i = sin h -f- cos L cos d versin t.

This is Bowd. 1st method for finding latitudes near noon. It

is customary to use the latitude found by the " sailings " for the

approximate latitude.

Table XXIIL, Bowd., (latter part) contains the log. versin of

t, with index increased by 5. As the second term has two mem-
bers, a table of nat. sines and cosines will be necessary.

9. To find the latitude by two altitudes near noon when
the time is not known.
The following method was devised by Prof. Chauvenet. The

author has used it under different circumstances at sea, and

strongly advises its substitution for the method in Art. 8, and

also for the old method of circum.-merid. alts. Its use is restricted

in the same manner as the method of circum.-merid. alts.

Its accuracy depends principally upon the precision with which

the difference of alts, has been obtained.

As a preliminary to the method, we have, from Art. 8,

sin h — sin h = 2 cos L cos d sin 3
£ t

by Trig (106)

cos J (h -{- h) sin \ (h — h) = cos L cos d sin '\ t

But ft = h nearly, and we may put

cos I (h -\- h) = cos /i = sin z= sin (L—d)

Hence
. . n , N cos L cos d sin 2i t . .» *(*.-*>=*—

(si„ £_<?)-- (*•)
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Let A h = h—li\ the difference between the meridian and

observed altitudes.

And as A h and t are small

sin \ A h = \ A h sin 1"

sin \ t = \ t X 15 sin 1''

(to express t in seconds of arc) substituting these in (a).

.7 cos L cos <2 (J £ X 1*5 siu l") s

A/i =
sin 1" =
Ah==

sin (L— d)\ sin 1'

112 . 5 sin 1" cos £ cos d
e

sin (Zr -d)

,000004848

0''.000545 cos L cos d
t
2

sin (L — d)

In this formula £ is expressed in seconds, t is, however, usually

expressed in minutes, and we must put (60 ty for t
2 and our

equation becomes

A , 1".96349 cos L cos d ., .Ah = ^—j—j, 1
2

sin (L — a)

When t = lm

1.96349 cos L cos d
A'/i =

sin {L—d)

This equation may be computed for each value of L and d.

Table XXXII., Bowd., contains the value of A' h for each 1° of

declination from 0° to 24°, and each 1° of latitude from 0° to

70°, except when (L-d)<. 4°.

We have

A h= t- A'h
h Q
= h -f-

A h, the meridian altitude.

Let

h and h' = the true altitudes.

T and T, the corresponding hour angles in minutes of time.

t = T' - T, the difference of hour angles,

T = \ (T' + T) the middle hour angle.

Then
h = h -f A' h T
h = h' + A'h T'<

}(«•)
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The mean of these equations is

ft.= !(* + *-) + !(*• +**)** (*•)

which, substituted in (b), gives

}h== i(h + h') + (lt>+T >)&'h (c.)

The difference of equations (a) is

h-h' = (T' 2 - T2

) &'h = 2 TQ t A' /i,

hence

_ ,
(ft - fr

) _ j(h-h'
)

2 M'/i — i M'/i

substituting this in (c), we have

Hence the mean of the two altitudes, plus the square of one-

half the interval between the observations multiplied by the

change of altitude in one minute from noon (Table XXXII.,

Bowd.), plus the square of one-fourth the difference of altitude,

divided by the first correction, is equal to the meridian altitude.

The meridian altitude obtained may be proceeded with as

usual.

10. To find the latitude from several altitudes taken near

the meridian, the apparent times of observation being

known.
See Bowd., page 202.

This method is commonly called the method of circum-meridian

altitudes.

Let h'
t
h", h !

", etc., be the several altitudes (observed)

t\ t", t'"
s
etc., the corresponding hour angles.

We have for each reduction to the meridian from Art. 9,

A x h = i!
% A' h .'. h = h' -f A x h

A 2 h = t
m A' h :. h = h" -f A, ft

etc., etc.
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or

1

Aii*i + A 2 h-\- AJi
7

n

t'
2 + t

" 2 + p :

A' h.

n°—
n

*, = *' + *"+»-
- +n '

Hence the meridian altitude is equal to the mean of all the alti-

tudes, plus the mean of the squares of the hour angles multiplied

by the change of altitude in one minute from noon.

Table XXXIII., Bowd., contains the squares of hour angles

up to 13m., and Table XXXII. the change in altitude in one

minute from noon. When the heavenly body passes through or

near the zenith, the change of altitude is too rapid for the

assumption.

h =h"+A'hT2

h«= K'"+A'h(T+xy

Subtracting the half sum of first and third equations from second,

we deduce

A> x*= h"-\{h'-\-ir) (a.)

The difference of first and third gives

A' h T= K
l(h'-h'")

which substituted in second equation, gives

Substituting in this the value of A/ h x1 from (a)

which affords solution by giving h
0i
the meridian altitude.



38 THEORETICAL NAVIGATION AND NAUTICAL ASTRONOMY.

12. To find the latitude by the rate of change of altitude on

prime vertical. (Prestel's Method.)

sin h = sin L sin d -|-cos L cos d cos t

cos h d h =— cos L cos dsintdt

j 7 cos L cos d sin t d £ , N&h=- , (a.)
cos A '

From the astronomical triangle we have

cos d ; cos 7i = sin Z [ sin t

. „ cos tf sin t
.'.sinZ=

cos A

which substituted in (a) gives

d h= — cos .L sin Z dt.

Multiplying the second member by 15 to reduce to arc, changing

sign for correction and transposing, we have

15 cosi> sinZ

If now T' and T are respectively the hour angles of the alti-

tudes h and A', we have for a small interval of time and small

change of altitude

h'-hT'-T=t=
15 cos L sin Z

cosL= -—— cosec Z (b.)
lb t

and when body is on prime vertical Z=90° and

h'-h
cos L =

15*

To use this observe two altitudes and note the times carefully.

A very good approximate latitude may be obtained when the

body is within 2Q or 3° of the prime vertical, (b) may be used

when Z is approximately known.
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13. To find the latitude by an altitude of the Pole Star,

the longitude of the place and local mean time being given.

In figure 11 let fall the perpen-

dicular 31 x, then in triangle M x P
cos t= cos p tan <j>.

tan = tan p cos t

and as <p and p are small (p== 1° 25')

(p = p cos £ nearly (a.)

= 9O°-(Z+ 0)

cos />; sin h = cos 0: (sin L-\-<p)

• 7 * • / T I ^\ C0S P
sin h= sm (i> -j- d>) -

1 ' COS </>

but as p and are small, and their cosines nearly equal to 1, we
have

Sin h = sin (L -f- </>)

L = h-<1>

When £ is more than 6 hrs. and less than 18 hrs., cos t will be

negative, and </> will be negative in (a), and numerically,

L = h-\-<f>

t is the hour angle of the star. The local time must be changed

to sidereal time, and if S= sid. time, then

<j> = p cos (#-*'s K. A.)

If we consider p and star's R. A. to be constant,
<f>
may be

computed and tabulated for different values of S.

Owing to the changes of E. A. and dec. of Pole Star, such

a table would require correction each year. It is better in prac-

tice to compute <j>. Bowd. gives a table, page 206, for </>, but at

the present time the table is incorrect.
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15. To find the latitude by two altitudes with the elapsed

time between them, supposing the declination to be the

same at both observations, and the Greenwich time approx-

imately known.
In the Fi- 12, let 31 and 31' be

the two positions of the body.

h = 90° - Z M, first altitude.

h'= 90°—Z M', second altitude.

d = the declination common to

each of the triangles.

t = 31P M', the difference of the

hour angle ; the elapsed apparent

time in case of the sun ; the elapsed

sid. time in case of a star.

In the case of observations of a

star the elapsed mean time noted by a watch or chronometer can

be changed to a sid. time interval. In the case of the moon, the

elapsed mean time can be corrected for the change in R. A. of

moon during the interval.

If T == hour angle of body at 31, and

T' = " " " 31'

t = T'-T

We have the above given.

Let The the middle point of M 31'

Let A = MT=M' T=%MM'
B == 90° -P T, the declination of T

}

H= 90° -Z T, the altitude of T.

q = P T Z, the position angle of T.

By assumption P T 31 and P T 3f/ are equal right triangles,

and "angles P T 31, P T 31' = 90°, hence q = 90°- Z T 31 = Z
T 31' — 90°.

In the triangle P T 31, by Nap. Rules, we have

Sin A = cos d sin It), .

A \

{a)
Sin B = sin d sec

Tan B

by which A and B may be found.

tan d sec J t. (b.)
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In the triangles Z M T, Z M' Thy Spher. Trig. (4)

Sin h= sin II cos A -f- cos H sin A sin q ) , .

Sin/i'=sin II cos A - cos if sin A sin q )

The half difference and half sum of these

Sin \ (h—h') cos J (/i -|- h') = cos 5" sin ^4 sin q

Cos J (/i - h') sin | (/i+ ft') = sin H cos ^.

from which

«. jt cos \ (h — h') sin | (h -f- ft')

cos J.
(*)

c . sin A (ft— ft') cos £ (ft -4- ft') , >.

Sin 5 = aA. ^ 2^—! L
(e.)cosizsm^l

which gives 90° - Z I7 and the angle P T Z.

We now have in the triangle P T Z

Z T=90°-H
q = P T Z
B= 90°-PT

given, to find P Z= 90 -L.

Let fall the perpendicular Z and represent it by C.

Let T = Z.

In triangle Z T by Nap. Eules

(/)
cos q= tan Z tan H )

tan Z= cot H cos 5 j

sin H= cos iT cos (7 ) , ,

cos (7= sin ^"sec ^ J
' '

which determines ^ and (7.

p 0= 90°-(-B±Z).-Zwhen perp. falls without the triangle

PT Z.

In triangle P Z

sin L =cos (7 sin (5+ Z) (ft.)

In order to simplify the solution of the whole work, it will be
necessary to find the values of C and Z, if possible, by using first

data. To do this, we have in triangle Z T

:
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sin G = cos H sin q

rr sin G
cos H =

sm q

substituting this in (e) we have

sin c= sin l (h-h ') cos & (ft-fft
1

) (*•

)

sin J.

and substituting first of (#) in (d) gives

cos A cos

The values of C and ^ thus obtained may be substituted in

(h) and latitude found.

To condense the formula, and taking reciprocals of equations

(a) and (6) we have

cosec A= sec d cos J £

cosec B = cosec d cos A
sin (7 = sin J (/i— /i ) cos i (h -\-h') cosec J. [> (&)

sec^= sec J (h-h') cosec J (/i-j-/i') cos A cos #
sin L = cos C sin (i? 4r ^)

It is unnecessary to take out A and C from the tables, as the

log. cos A may be taken corresponding to log. cosec A, and log.

cos C corresponding to log. sin G.

The equations given above, give the form of Bowd. First

method. They can be further simplified by finding B by its tan.

in (b) and we may use

tan B == tan d sec \ t

sin G = sin \ (h-h') cos J (h-\-k) sec d cosec \t

sec Z = sec J {h— h') cosec J (/i -|- h') sin e£ cosec 5 cos G
sin iv = cos G sin (B + Z)

(0

^4, 5, (7, ^ and L, are each numerically less than 90°. A is in

1st quadrant.

q is -|- when 1st alt. is the greater, — when the smaller. It

really makes no difference about C, if we keep it less than 90°,

as only its cosine is used. B has the same name as the declina-

tion.
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16. We have seen that Z may be plus or minus according as

the perpendicular Z falls without or within the triangle. By

reference to the figure it will be seen that the perpendicular can

fall without the triangle only when the continuationW 21 crosses

the meridian between P and Z.

Hence the rule : mark Z north or south according as the

zenith and elevated pole (N or S) are on the same side of the

great circle, forming the two positions of the body. (See Bowd.

p. 181.)

In the figure P ZM> P Z IT and Zis -f- or has same name

as the latitude.

Hence, when the greater azimuth corresponds to the greater

altitude, Z has the same name as the latitude.

By projecting a figure with perpendicular Z falling without

the triangle P T Z. we would see that the greater azimuth cor-

responds to the lesser altitude, and we have : When the greater

azimuth corresponds to the lesser altitude, Z has a different name
from the latitude.

As Z is determined by its secant it cannot be accurately deter-

mined when very small. This will be the case when the altitudes

are very great ; whenM and 31 are near the prime vertical ; or,

in general, when the differences of the azimuths ofM and J/
7 are

very small or nearly equal to 180°.

In the case of the sun this will be when the latitude and decli-

nation are nearly equal. This method cannot, therefore, be used

with accuracy, when the sun crosses meridian near the zenith.

17. To find the latitude (circumstances as in last problem)

•with an assumed latitude. (Douwe's method. Bowd. 2d
method

)

In figure of last example

Let L' = the assumed latitude.

T = i {T'+T) = ZP Tthe middle hour angle.

%t= ^ (T'—T) = half difference of hour angles.

From the second of (I), Art. 15, we have

sin c= sini (h-h') cos j (h+h l

) (a.

)

cos d sin J t
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and in triangle P Z

sin T = sin G
cos L

and (see Art. 8)

cos z = sin h -\- 2 cos d cos L' sin
2

£ T
cos z = sin h'-\- 2 cos d cos L'sin 2

\ T

In place of 2 sin
2

^ T, 2 sin
2

J I7
' we may use versin T, and

versin T'.

The latitude obtained by " Sailings," may be used, and should

the latitude obtained differ largely from the assumed latitude,

the work may be gone over again with the new latitude.

For computing (a) the first part of Tab. XXLLL, Bowd., may
be used conveniently.

18. To find the latitude from two altitudes of different

bodies, or of same body when the change of declination is

considerable, the Greenwich times being known.
Reduce the observed altitudes to true altitudes ; the difference

between the correct chronometer times must be taken, and when
different bodies have been observed this interval changed to sid.

interval. From this data compute T and T' the hour angles of

the two bodies.

Fig. 13. Given in Fig. 13 :

N d = 90°-PM
d' = 90°-P M'

h = 90°-Z3I

h' = 90°-ZM'
T=Z P M
T =Z P M'

t = T'-T=M P M'

Let fall the perpendicular

M 0, and represent declina-

tion of by D>

P = 90°- D'

and we have
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cos t — tan d cot D'

tan D'= tan d sec t (a.)

M' = d—D' and, representing M M' by 5
sin d; cos 5 =sin P'; cos (d'—D')

„ sin dcos (cf— P') (6.)
cos P = :—^- ' x

'

sin D

letting P = M' M, and P' its supplement M M[ P

cos P' : sin (d'— D') = cot £ : cot P
cos P' : sin (D'—d') = cot £ ; cot P'

, „, cot t sin (D'—d') (c.)

cos P'

In the triangle ZM' M calling the angle ZM' if, Q\ we have

sin i Q'= /cos j (-g + fr + &) sin j (P + /V-/Q
^ cos h' sm P (d.)

and if q'= position angle P M Z
q'=P'-Q< (e.)

In the triangle P 3P Z, letting fall the perpendicular Z n, and

representing 31' n by N', we have

cos q' = tan A' tan JSf'

tan JV'= cot h' cos 5'

Pn = 90°— (rf'+'nO

and in the two triangles we have

sin h' ! sin P = cos N' '. sin (d' -\-N')

. T sin h' sin (d'-\- N') (a.)sm P= ^—

!

Vi/ y

cos iV'

In (5) if the perpendicular JkT falls within the triangle, M'
would be =D — d numerically.

The radical in (d) may have the positive or negative sign, and

hence we may have two values of q'= P' + Q'.

In the figure

P M' M—Z M' M.

q' will equal P M' M -\- Z M' M when the greater azimuth

corresponds to the lowest altitude. The ambiguity may there-
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fore be removed by noting the azimuths at each observation.

The other unknown quantities may be determined by their

proper sign by restricting t to positive values less than 12 hours.

19. The hour angle T in the triangle P 31' Z may be found,

and thence the longitude if the. times have been noted by a chro-

nometer regulated to Greenwich time.

We have in the triangle Z 31' n and P n Z

M' n = N'

P n = 90° ~(N'+d')
cos q'= tan N' tan h'

tan N' — cot h' cos q'

sin N' : cos (iV'+ d') = cot q : cot T'

cot T = CQt g' cos
(
N'+ d')

sinN'

If L has been already found, we have also

cos h' '. cos L= sin T' : sin 5'

sin T sin 9' cos /i'

cos L

Sin T' and sin q are positive when M' is west of meridian ; nega-

tive when it is east.

20. In Arts. 18 and 19, we have employed the angles at M' in

pIG j^ the triangle P 31' Z. If in the

accompanying Fig. 14, we had
employed the angle 31, and con-

sidered t positive in the direc-

tion opposite the diurnal rota-

tion, remembering that q is less

than 180° east of meridian, and

greater than 180° west of the

meridian, we should have

tan D = tan d' sec t

„ sin d' cos (d— D)
cos B = :—^- i

sin D
, n Cot t sin (D—d)

cot P = 1
cos D
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sin i q = /cos i (ff 4- ft + fr) sin i (ff-L.ft-.fr)

* cos /i sin i?

<? = p+<?
tan ^7"= cot h cos 5

sin £ = sin h sin (#+ d)

cos JV

cot T= cot q cos (JV-f- cZ)

sin JV

The above formulae may be deduced directly from the figure

in the same manner as those of Art. 18.

21. If in the equations of Art. 20 we put

D = -A B=C P=90°-F
Q=Z q=z o

)
Qo_ G N=^j

we will have

tan A= — tan d' sec t

n sin d' cos (A -\-d)
cos C= ^—J-—

i

sin A
, ^ tan t cos J.

COt i^= — -; J-T—JV
sin (^-|-<i)

sin J Z= /CQS iC^+ ^-r-^) sin & (<?+ ft-fr)
^ cos h sin (7

tan /= cot h sin G

sin £ = smc?siD (^ + ^)

cos /

(See Bowd. 4th Method.



CHAPTER VI.

LONGITUDE.

1. Longitude is the angle at the pole between the meridian of

the place and theprime meridian. In general the Greenwich merid-

ian is taken as the prime.

In the Fig. 15, let P G be the meridian of Greenwich (celestial)

pm 15 and P A the meridian of any place west

of it. A P G would be the longitude of

A. If now, (? P if be the hour angle

of any heavenly body at Greenwich, A
PM is the hour angle of the same body

at ^, and = G P 31-A PM = A P G.

Hence the difference in the hour angles

of the same body at two meridians is

equal to the difference of longitude, and if one of the merid-

ians be that of Greenwich, is equal to the longitude.

If the place, A, be east of Greenwich, the angle APM > GP M;
the difference would still be the longitude east, or —

In order then to obtain the longitude at sea, it is neces-

sary to determine the hour angle of some heavenly body at the

same instant, at the meridian of the place and at Greenwich.

The local hour angles of heavenly bodies are found by computa-

tion. The Greenwich hour angles are found indirectly by means
of the chronometer.

2. The chronometer is a time measurer. A chronometer is

called a Greenwich chronometer when it is regulated to Greenwich

mean time. When we say regulated to Greenwich mean time, we
mean that the reading of the chronometer, plus or minus a known
correction, is the Greenwich mean time. In order to find this

correction, we must know the error of the chronometer on some

given day, and its daily rate.
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The error of a chronometer is the amount that the chronometer

is slow or fast at a given time.

The rate of a chronometer is the amount that it gains or loses

daily.

It is evident that if we have then the error of a chronometer

on some given date, and wish to find it on some other date, we
must multiply the rate by the interval in days (and if necessary,

decimal parts of days) and apply the result to the given error,

according as the chronometer is gaining or losing, and also

according as the date on which error is required is previous to

or after the date on which the error is given.

3. To find the rate of a chronometer, it is only necessary

to know or find its error on different days ; the difference in

errors divided by the elapsed number of days, giving the rate.

4. The chronometer correction is the quantity which must

be applied to the face of the chronometer to obtain the correct

time. If the chronometer is slow the correction is -)-, if fast,

correction is —

5. To find the correction for a G-reenwich chronometer
by equal altitudes of the sun.

In the case of a fixed star, the mean between the time of two
equal altitudes is the time of transit. This may be compared
with the computed time of transit and error of timepiece

deduced.
In the case of the sun, owing to the

change in declination, equal altitudes of

ifandM do not give equal hour angles.

The first observation is, however, taken

at M, when the body has a certain de-

clination, and the angle MP Z is not
yM changed by the change of the declina-

tion from M to the meridian. In the

two triangles, ZP M, ZP M'to find the

error in t due to change in d,

We have

sin /i=sin L sin d -\- cos L cos d cos t

= sin L cosddd— cos £ sin d cos tdd— cos L cos d sin t d t
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sin L cos d J d— cos L sin d cos t d t
&t

d;=
15 cos L cos d sin t

tan Ldd tan 6? d d

15 sin £ 15 tan t

which gives the error in t due to change of d.

We may put, as the change of declination A c£is small,

A .
tan L & d tan d a d

15 sin t
~ 15 tan £

If A' d be the hourly difference of d given in the Ephemeris,

and t the hour angle be expressed in hours

.
tan Lt a' d tan d t a' d (a.)

15 sin t 15 tan £

This gives an approximate expression for the error of t.

The correction to t would be

_ taniU'd tan d t a' d (b.)

15 sin t ~*~ 15 tan £

If now the sun be observed at M and M and the times noted

by Greenwich chronometer, the middle chronometer time is the

mean of the noted times. If the elapsed time is 2 t, the middle

chronometer time would be

T-j-t
or

T'-t

This middle chronometer would be in error of time of transit

by A t found above, and we should have for chronometer time of

apparent noon

T -f- 1 + A t, or

T - t + A t, or

If the first observation had been P if it would be necessary

to find the chronometer time of apparent midnight. By a
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similar process to the above, paying attention to the signs, we

would have
tan Lt^d tan dt a' d (c.)

15 sin t ' 15 tan t

6. If in (b) we put

A= ——

—

:

—
- and B =-.>-,

,

15 sm t lo tan c

we will have
a t = Aa' d tan X -(- 5 A' d tan d

L and c? are -f- when north, — when south.

A c/ and A' d are -f- when the change of the sun's declination is

towards the north,—when towards the south.

A is — since t is <12 hours.

B is -|- when t is < 6 hours— when t > 6 hours.

J[ and 5 may be computed for different values of f, and their

logarithms tabulated. Such tables are given in " Chauvenet's

method of finding the error and rate of a chronometer." The
argument is 2 t, or the elapsed time.

In the equation for the lower branch of meridian the sign of A
is changed as in (c).

2 t should be properly the elapsed apparent time. The interval

is so small that this is generally neglected and the elapsed mean
time used. It may be also corrected for the supposed or known
rate of the chronometer. A" d is taken from the Nautical Almanac

for the instant of apparent noon or apparent midnight.

In observing equal altitudes, use equal intervals of 10' or 2(K

It is not necessary that the altitudes be correct, but only that

they should be the same on each side of the meridian. Use there-

fore, the same instruments at both observations, and be especially

careful to use the same end of the roof of artificial horizon.

T A- T
7. —X— -f~

A t gives the chronometer time of apparent noon

or of apparent midnight.

By applying the equation of time we have the chronometer time

of mean noon, the difference between which and the longitude is
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the chronometer correction. If the correction of the chronom-

eter to local mean time is required, we have only to omit the

application of the longitude.

8. To find the correction to a Greenwich chronometer
by a single altitude of any heavenly body.

As before, the observation must be taken at some place whose
latitude and longitude are well determined.

We will have, therefore, in the astronomical triangle, the case

when three sides are given to find the angle t, the formulae for

which are (Spher. Trig. 164, 165, 166).

sm i A
2

JL

COS

/sin (s— 6) sin(s
* sin 6 sin c

/sin ssin (s

—

a)

o)

tan J A= yf

sin b sin c

/sin (s b) sin (x— c)

sin s sin (s—a)

We have given in Fig. 17

Fig. 17.

N
L, to find

PM = p = 90°—d
ZM = z= 90°—

h

P Z=coZ =90°
ZPM=t

The chronometer times of the alti-

tudes are taken and their mean plus

the supposed chronometer correction,

gives us the Greenwich time, with suf-

ficient accuracy for determining the

declination of the body. The mean of

the altitudes is taken and used as a

single altitude. For finding t by its

sine, we have, using the sides of the triangle directly,

tosmtu/^l (P + g co L) sin J (z -\- co L — p)
cos L sin p

It has been found more convenient to use the following values

of the sides, viz.

:

90° — L, 90°—A, and p which gives

sin 1 1 = M* 2- (L p -f- /i) sin j ( .£ -[~ P — ^)

cos L sm p
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or, if we put
s'=h(L +P + h)

sinii= /cos s' sin (s'—h) (
b )

* cos L sin p
Which is Bowd. formula, p. 209.

To determine t by its cos, using direct values of the sides, we

would have

cos i t== /sin ± (co L -{-p + z) sin \ (co L + p - z)

* cos L sinp
or, if

s"= \ (co L +p + z)

cos i t= / sin s" sin (s" — z) (
c-)

^ cos Z> sin p

To determine t by its tangent, using direct values of the sides, we
would have

tan J t = /sin(s
w --coZr)Bin(s ,"-j3)

^ sin s"' sin (s"' — z

)

in which

s"' = |(coi+z + p)

t is —when the body is east of meridian.

In case the sun is observed, if P. M., t is the L. A. T ; if A. M., it

is 12 hrs. - L. A. T.

Bowd. Tab. XXVII. contains the direct value of t in P. M.

column, and also 12 hrs. — t in A. M. column. In case any

other heavenly body is observed, t is its hour angle,+ when west

and — when east of meridian. The L. M. T. may be found, and

thence the Greenwich time by the method in the Chapter on

time.

In the case of the sun, the L. A. T. is changed to mean time,

and by applying the longitude, to Greenwich mean time. The
mean chronometer time is compared with this to find the chronom-

eter correction.

When t < 6 hrs. J t < 45° and is better determined by b, as the

sines of angles less than 45° vary more rapidly than the cosines.

(See Chauv. Trig. Art. 112.)

When great precision is required, t is better determined by d,

b and c are the most convenient formulae for finding L. M. T. at
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sea. Many Navigators determine the errors and rates of their

chronometers by single altitudes. It is advisable then to use (d).

In taking observations for single altitudes take half the obser-

vations with each end of the roof. The times may be noted by

a watch compared with the chronometer. If the interval between

the comparison and observations is long, or the rate of the watch

considerable, the watch times must be corrected for this change.

9. The two methods given are the only convenient methods

which the Navigator can use with the instruments at his dis-

posal for finding the correction for his chronometer. There are

many ports where time-balls are dropped at the same instant each

day for the convenience of the shipping in the harbor. Unless,

however, they are dropped by electricity from some respectable

observatory they are not to be depended upon.

10. As before stated, the methods of finding longitude at sea

depend upon finding difference of time. The Greenwich chro-

nometer, carefully regulated, furnishes the Navigator with the

Greenwich time. The local time is found by observation of

some heavenly body. The most common method is by (b) and

(c) in Art. 8. Other methods are given. The latitude is found by

applying the run of the ship to the latitude found at noon or by

some other observation. The declination is taken from the Nau-

tical Almanac for the Greenwich mean time, as shown by chro-

nometer.

U. To find the hour angle (and thence the losal time) of a

heavenly "body just visible in the horizon.

LetM be the body

P M= p = 90° - d

P N=L
In the triangle M P N (Fig. 18),

right angled at N, we have

cos MPN= tan P N cot PM
cosMPN= — cos t= tan L tan d

cos t = - tan L tan d.
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12. To find the hour angle of a heavenly "body when on or

nearest to the prime vertical.

In the case of the body at n, d> L, the body is nearest to the

prime vertical when Z n is tangent to its diurnal circle, and

P n Z= 90°. We then have

cos t = tan p tan L = cot d tan L.

If d < L and of same name, as for a body whose path is m
m\ the body will be on prime vertical at m and P Z m— 90°, and

cos t === cot L tan d.

If d and X are of different names, as in the case of the body

whose diurnal path is o o', the nearest visible point to the prime

vertical is in the horizon, and the solution is effected by the

equation

cot t = — tan L tan d, of Art. 11.

13. As A. M. and p. m. sights are enjoined in the directions

of the Navy Department, it would be well if Navigators used the

same altitudes for both observations. The corrections to the

observed altitudes would be the same, and generally the longi-

tudes determined would be at nearly equal intervals from noon.
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They could each be reduced to the noon longitude, and their

mean taken.

14. To find the longitude at sea by the intersection of
circles of position.

At any instant of time the sun is in the zenith of some place

whose latitude is equal to the declination of the sun at that

instant, and whose longitude is equal to the Greenwich apparent

time.

In Fig. 20, P G is the meridian of Greenwich. P is the

meridian of the place which has the sun S in its zenith. S is

the latitude of this place and is equal to the declination of the

sun. G P S is the Greenwich apparent time, and is equal to the

longitude of S.

If now any number of observers Z, Z', Z", etc., situated on the

circle, observe the sun at the same instant of Greenwich appar-

ent time GPS, their zenith distances Z S, Z' S, Z" S are equal.

Such a circle is called a circle of equal altitudes.

Their Greenwich times being equal, they would each obtain

from the N. A. the same declination S 0. Each observer would

have in the astronomical triangles S P Z, S P Z', S P Z", etc.,
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the side P 8= p = 90° — d common, and the sides 8 Z, 8 Z\

etc., = 90° - h equal. The hour angle of the sun &t Z is ZP 8,

at Z\ Z' P 8, and at Z", Z" P 8. The difference in the values

of these hour angles must be due to the different values of the

third sides, P Z, P Z\ P Z", etc. These sides are 90° - L,

90° - L, 90° - L", etc. Hence the different values of the

latitudes cause the different values of the hour angles, and

thence the different values of the longitudes G P Z, G P Z',

G P Z", etc.

An infinite number of circles of equal altitude may be drawn

about 8 possessing the same properties as those described. If,

therefore, with the sun as a centre, a circle be drawn upon a

globe, all points upon this circle will have the same altitudes of

the sun at the same instant.

As, therefore, the Greenwich time and altitudes are constant

for any particular circle, an observer at Z, by using his own
altitude and Greenwich time, and assuming the latitudes of Z, Z\

Z", etc., can determine the corresponding longitudes G P Z,

GP Z,GP Z', etc.

Suppose an observer at Z' , his latitude unknown, with his

zenith distance Z' 8, polar distance P 8, and the assumed lati-

tudes of Z and Z" should determine their corresponding longi-

tudes.

These assumed latitudes and determined longitudes may be

plotted upon a globe, and the arc Z Z " of the circle of equal

altitudes drawn through them. The observer has a line Z Z"
upon which his position Z' is known to be. Such a line is called

a line of position.

The direction of this line at any point is the direction of the

tangent to the curve at this point. The direction of this tangent

will be at right angles to the bearing of the sun at that point.

Hence by a line of position we may determine the azimuth of the

sun.

If now the observer wait until the sun has changed its bearing

n°, and with the new values of the altitude and declination of the

sun, and same values of the latitude, compute again a portion of

the new circle of equal altitudes, as he is also on the second line

of position, he must be on the intersection of the two. If this
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be plotted as before upon the globe, the intersection will be at Z\

the latitude and longitude of which may be taken from the

globe. To plot these curves accurately would require a larger

globe than would be convenient. They may, however, be plotted

upon a Mercator's chart.

By reference to the principles of construction of the Mercator's

chart, it will be seen that only the loxodromic curve plots as a

straight line. The circle of equal altitudes would plot as an

irregular figure, its greatest diameter coinciding with the arc of

the meridian N 0. The whole figure could not indeed be plotted

upon ordinary charts, unless the zenith distances Z S, Z S\ etc.,

were very small.

It is customary to plot only the small portion of the curve

lying between the assumed latitudes, as that is all that is

required. For small differences of latitude this would be prac-

tically a straight line. If the difference of latitude be great, or

the chart a large scale one, latitudes between Z and Z" may be

assumed, the corresponding longitudes found and plotted, and

the curve traced by hand through them.

In the practical use of this problem at sea, it is customary to

assume latitudes 10' or 20' on each side of the supposed one, and

determine the corresponding longitudes.

In general, assume the latitudes to cover any supposed error

of the latitude.

In the foregoing, the discussion has been confined to the sun.

The body S may be any other heavenly body which can be con-

veniently observed.

15. If, between the observations, the observer should change

his position, as is generally the case at sea, the first observation

may be corrected to the position of the second by correcting the

altitude, or, more conveniently, by moving the first line of posi-

tion to the place of the second observation.

If the first observation be taken at Z (Fig. 21), and the ship

run to Z, Z / or Z is the correction to the altitude, or zenith

distance Z S, to find the zenith distance Z S at the same
instant.
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If the distance be small, Z 0' may be considered as a right

line having the direction of the tangent at Z, and

Z' 0'=Z = A z= ZZ' smZZ' 0'=Z Z'sinZ' Z 0'

N ZZ'=C= course

NZ = 180° — Z
A z = - A h = Z Z' cos [G - (180°-^)]

A h= -ZZ' cos (C-Z)

If the first observation be at Z' in the same way we will have

A h = ZZ' cos (C — Z)

Fig. 21.1

The difference between C and Z is taken, and Z reckoned from

the north point 180°. Then, if the difference between C and Z
is < 90°, A A is additive ; if > 90°, A h is subtractive. (See

Bowd. Eule, p. 183.) The equation for A h may be solved by

the Traverse Table. Find (C-Z) at top or bottom of page, and

the distance sailed in distance column, opposite in difference of

latitude column, is the correction in minutes and tenths to be

added to altitude when difference is less than 90°. If the dif-

ference is greater than 90°,find 180°

—

{C-Z), as before, and cor-

rection is subtractive.

To move the line of position, lay off on the chart the distance

ZZ in the direction of the course sailed between the observa-
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tions, through the extremity draw the line Z parallel to Z 0'.

This evidently accomplishes the same result as correcting the

altitudes. It possesses the advantage of being simple, and when
the chart has the magnetic compass plotted upon it, the compass

course can be laid off between the observations.

The method of correcting the altitude must be used, however,

in the case of Double Altitudes for Latitude.

We have seen that the line of position is at right angles to the

bearing of the sun. If the sun is on the prime vertical at both

observations, the lines of position will run north and south, and

there will be no intersection.

If L = d nearly, the lines of position will not change their

direction sufficiently to depend upon their intersection.

When the body is near the prime vertical, errors in the lati-

tudes have the least effect upon the corresponding longitudes.

When the body is near the meridian, errors in the longitude

have their least effect upon corresponding latitudes.

Latitudes may be assumed, and the corresponding local mean
times found, or the longitudes may be assumed, and the corre-

sponding latitudes determined by Art. 4, Chap, on Latitude.

16. If there is an uncertainty in the altitude, draw on each

side of the line of position lines parallel to it, and distant from

it, the amount of the supposed uncertainty, and the position will

be somewhere within this belt.

In the same manner, if there is an uncertainty in the Green-

wich time, parallels may be drawn upon each side of the line of

position equal to this uncertainty.

17. Near the coast, when charts aro on a sufficient scale, there

is no difficulty in determining the position with a considerable

degree of accuracy. At long distances from the coast line, our

charts are generally upon too small a scale to admit of an accu-

rate plotting of the lines. This may be remedied best by project-

ing upon a piece of paper a sectional chart which shall cover the

difference of latitude and longitude.

The latitude may be found by computation, as follows :
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Let /r l2 the longitudes of A and

B in latitude L.

// l{ the longitudes of A'

and B' in latitude 2/

L = latitude of C. J

From the similarity of the

triangles A B C and A' B' C

{h'-l:) + (h

U k'

u. - w
The Navigator will find the method of Art. 17 preferable to

this. It does not require great nicety in the construction of the

chart. The latitude and longitude of the intersection may be

transferred from this chart to the one in use.

Fig. 23.

18. To find the longitude by means of observed lunar dis-

tances. (See Vol. II., No. 4, of the Ast. Journal. Chauv.

Method.)

The observation is supposed to give

the apparent distance and apparent

altitudes of the two objects ; but if

the latter cannot be observed, they

must, in order to apply the present

method, be previously computed by
known rules. Taking at once the

most general case, namely, that in which the object observed

with the moon also has parallax, let us take " the sun." The
formulae will require no change for a planet, and for a star no
change beyond making the parallax zero.

Let, then in Fig. 23, Z being the zenith of the observer,

d = S' H' = the apparent distances of moon's and sun's

centres.

h = M ' H= the moon's apparent altitude.

H= S' H' = the sun's apparent altitude.
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d1} h lf Hi, the distance and altitudes referred to that point of the

earth's axis which lies in the vertical of the observer, which point

we shall distinguish as the point 0.

We shall then have

and if

cos d
x
— sin h x sin Hx cos d - sin ft sinH

cos h x cos Hx cos ft cos H

sin ft sin Hx cos h x cos Hxm = . .
—~ n=

1
-1

sin ft sin M cos ft cos izi

then

cos d — cos dx= (1 — ?i ) cos rZ — (??i — n) sin ft sin H (1.)

Let

&d = dx
- d, Ah = hx

- ft, A H= H - #;,

then

cos d — cos dx = 2 sin J A d sin (d -f- \ A t?)

cos (ft -f A ft) cos (H - AH)
cos ft cos i?

i A 5- sin (H- \ AH.,

w =
/. _2 sin J A ft sin (A-f-iA ft)W/i_i 2 sin i

cos iT

2 sin i A ft sin (ft -f
i A h) _ 2 sin i A H sin {H - % A H)~

cos ft cos H
, 4 sin ^ A ft sin i A 77 sin (ft -\-jAh) sin g- \ A J?)

COS ft COS 5"

also observing the relations

sin lfi x cos ft= \ [sin (2 ft -f- A ft) -j- sin A ftj

cos ft x sin ft= 4 [sin (2 ft -f- A ft) — sin A ft]

sin Hx cos H= J [sin (2 jS" - A H) — sin A H]

cos i7x sin #= i [sin (2 H - A H) -f sin A 5"]

we find

sin ft, cos ft sin i£ cos H— cos ft, sin ft cos Hx sin ^
sin ft cos ft sin Hcos H

sin A ft sin (2 H - A H) - sin A .3" sin (2 ft -f A ft)

2 sin ft cos ft sin H cos -9"
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if then we put

A 2 sin \ A h sin (h -j- \ A /i) cos cZ

cos 7i

i> = sin A 7l sin 2
(
H~ A g

)
1

2 cos h cos .2"

r _ _ 2 sin i A Rsin (E- \ A E) cos fZ

1
"~

"

"

2 cos E
D __ sin gsin (2 h -f A 7?)

1

2 cos /i cos H

the equation (1) becomes

2 sin -i A d sin (7Z+ J A d) = A-+ A+ 6\+A — A d sec tf. (2.)

This rigorous formula may be adapted for practical use in

several ways requiring auxiliary tables. I proceed to give the

transformation which appears to require the fewest and simplest

tables.

If the terms of (2) are reduced to seconds, we shall have

A d sin (d + J Ad)= A1+B1+C1+B1
- Ax Cx sin 1" sec d. (3.)

in which

Ay — _ L
. sin (h -\- J A h) cos r/

A=-
COS /i

A/i sin (2 # - A #)
cos /i 2 cos 17

C\= —^?=.. sin (H-}
2
A E) cos rZ

A5=

cos 5"

A/i sin (2 /i+ A h)

cos ii 2 cos h

Let

p = moon's horizontal parallax reduced to the point 0.

r = moon's refraction.

P, R, the same quantities for the sun, then

A h — p cos (h — r) — r

AE= R - P cos (J?— i2).

The neglect of i? in the term P cos (i? — R) produces an error

altogether inappreciable in practice ; but the error produced by
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omitting r in the term p cos (h-r) may amount to 1", and we shall

therefore take

cos (h - r) = cos h -f- sin r sin h

A h = p cos h — r -J- p sin r sin ft

= (pcos-r)(l+- n̂J^\
V p cos A— r /

If we develop the last term, and put

h = r tan h,

we shall have, designating the term by K,

Tr. p sin r sin h , . ., „ /\ . /j \K/=^
;

= k sin 1" 1 4-— — I

p cos /i — r \ ' p sin ^p/

in which jp may be taken at its* mean value ; and since h and h

decrease together, it will be found that K is nearly constant, its

maximum being .000296, and its minimum .000285. A wider

range will be admitted if we allow for the variations of the ba-

rometer and thermometer, and of p; but without here entering

into more details, it will suffice to state that the error of the

value
K= .00029

is always less than .00006 so long as h > 5°, and the formula

Ah= (p cos h - r) (1 -f K)

gives A h within /7
.05 at a mean state of air, and within 0".2 in

all cases.

Let now
R

E l

cos hs cos H
The quantities r1 and R l will be given by a " Eefraction Table

for Lunars," which with the argument apparent altitude will give

the refraction divided by the cosine of the altitude, and will be

arranged precisely like the ordinary tables of refractions. The
corrections for the barometer and thermometer may be arranged

as usual in nautical tables, with the arguments height of barometer

(or thermometer) and apparent altitude ; or, which is preferable,

with the refraction itself instead of the altitude, for with the latter

arrangement the same table will serve to give the correction
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either of r or of r1
. These quantities then being substituted, the

corrections of the apparent altitudes become

A h= (p — r
l

) (1 -f- JS") cos h

A h= {B 1 - P) cos E
and the terms of (3) become

Ax= {p - r) (1 + K) sin {h + \ A h) cos d

d == - (i?
1 - P) s\n(H - \A H) cos d

D = (Bl — P)
sin (2 /t + z/ 7Q

1

2 cos A

The term ^ 0! sin 1" sec c£ is very small, its maximum being

only about 1". It is easy to obtain an approximate expression

for it, and to combine it with the term A
1 ; for in so small a

term we may take

Gx = — R ' sin H cos d = — h' cos d

where h'=B tan H; and without sensible error in most cases

we may take h ' sin 1" = K, so that

G1 sin 1" sec d = — K
and

^ - Ax Gx sin 1" sec d={p — r') (1 -|- 5T)
2 sin (/i-f |/l 7i) cos <f.

The error of this evaluation of the term A
x
C 1

sin 1" sec d is

produced chiefly by the neglect of P, and is therefore apprecia-

ble only in the case of the planet Venus. If we suppose the ex~

treme case in which P, p — r
'

, and H are all at their maximum
values, the error in this term is

0".44 cos d

and since the equation (3) is yet to be divided by sin d, the final

error in the distance is

0".44 cot d

and can amount to 1" only when d < 24°. Moreover, the error

is of less importance in the case of Venus, because much less

than the probable error of observation arising from an imperfect

bisection of the planet's disc in the feeble telescope of the sextant.
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Now let

A = (l+ K)>. «M*+^*)
sin h

G _ sin (g ~l z? -g )

sin ZZ I (A.

)

Z) _ sin (2 h+A h)

sin 2 /i

-4' = (p —r') A sin h cot d

B/= — (p — r) B sin .ETcosec <2

0'= - (-B'-P) C7 sin E cot rf

D' = (B' — P) D sin A cosec d

then our formula (3) becomes

A d
Bin (d+ j/ld) =A, +B .

c ,

sin d iii
Developing the first number, it becomes

4 d (l_\
2 sin t ^ ^ cog (d + I ^ <*) \

\ sin d /

so that if we put

_ _ A d2 sin 1" cos (d -\- \ A d)

sin <i

or, with sufficient accuracy

x= - zU 2
'sin 1" cot tf (B.)

"we have finally

Ad = A'+B'+ C'+D'+x (C.)

The logarithms of A, B, C and D can be given in extremely

simple tables, requiring little or no interpolation, the arguments

for log A and log D being p — r and h, and those for log B and

log G being B-P and H. A, B, C and D may then be com-

puted with the greatest ease. The value of x can be given in a

small table with the arguments A d and d, the table being first

entered with the approximate value of A d= A -\- B' -\- G -\- D.

The advantages of the preceding processes are conceived to

be—1st. The formula is almost rigorously exact, representing
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the correction of distance in all practical cases within 1". 2d.

The logarithmic computation is simple and brief. 3d. The tabu-

lated logarithms require no correction for the height of the bar-

ometer and thermometer. In no one of the approximative

methods in use are these features combined. Those which are

based upon accurate formulas either require troublesome com-

putations, or are shortened by the use of tables in which a mean
refraction is used, and no ready method is given for correcting

the logarithms in these tables for the actual state of the air.

Such, for the most part, are Bowditch's methods. It would

hardly be necessary to allude to those which are not based upon

accurate formulas, were it not that one of this character has been

adopted in a comparatively recent work of great merit in most

respects, Baper's Practice of Navigation. The approximate

method employed in that work is one received from Mendoza

Bios, apparently without a very critical examination ; in favor-

able circumstances, and particularly in low latitudes, it may be

so applied as to be sufficiently accurate, but in high latitudes

cases are common in which the error in the distance is 10', and

in the extreme case the error is 50".

If we compare our method with the shortest of the rigorous

processes of spherical trigonometry, we find—1st. It is simple in

the logarithmic computation, requiring only four-decimal, or, at

most, five-decimal logarithms. It is also an important simplifi-

cation for the practical navigator, that the distance and altitudes

are not required to be combined (to form, for example, their half

sum, etc.) previously to referring to tables, as in almost every

other method, approximative or rigorous. 2d. It separates the

principal corrections for the moon and sun, the principal correc-

tion for the moon being A'-\-B', and that for the sun being

O+D'. The advantage of this separation appears in the method
to be given for computing the correction for contraction of the

moon's and sun's semidiameters by refraction. (Section IV.)

3d. Correction for the Compression of the Earth.—In the

preceding investigation d
1

li Y H1
represent the distance and

altitudes referred to the point 0. This reference may be made
in the case of the moon by employing a horizontal parallax,
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equal to her equatorial horizontal parallax, increased in the ratio

—, a denoting the equatorial radius of the earth, and a x the

distance of the observer from the point 0, which distance is the

normal of the spheroid, and is expressed by

y (1 — e
2 sin 2

0)

Where e = eccentricit}*- of the meridian.

(p = geodetic latitude.

This process is subject to a slight theoretical error, the

amount of which will presently be estimated.

If we denote by — a i the distance from the centre of the earth

to the point 0, and put

7T = moon's equatorial horizontal parallax.

p = distance of the moon from the centre of the earth.

(5 = moon's geocentric declination.

d' = angular distance of the moon and sun referred to the centre of

the earth,

7r
1? p 1}

d1} d1}
= the same quantities referred to point 0,

A = sun's declination,

a == difference of right ascensions of the moon and sun, then we
have the known formulas

—

a e
2
sin

a i
—

-j/ ( 1 — e
2 sin 2

)

g L
cos 61

= g cos 6

Q y sin dy = p sin d -\- a i

whence, very nearly,

Qy= p -f- a i sin 6

(4.)

a, a-, /., ,
a i sin d\

sin TTy= —

L

=-114- }
—

pi p V p /

fll

sin rr (1 — i sin tt sin d -\- etc.

or, with extreme accuracy,

o.y e
1
sin

2
tt sin 6 sin (5

77
L
=:Tr .

-1_ —,-;7—
a sin 1
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The maximum value of the last term is only 0".2, so that in the

present application we may take

7T = IT .—

L

a

and the correction of 77

a* — a

may be given in a small table with the arguments <$> and nm The

similar correction of the sun's or a planet's parallax is insensible

in practice.

If, then, in the computation of (A), (B), and (C), we employ

for p the value p = tt
1 we obtain dL . To reduce finally to the

centre of the earth, we have

(6.)
cos d' = sin A sin 6 -j- cos A cos 6 cos a )

cos d' = sin A sin d
t
-\- cos ^ cos dx cos a )

from which combined with (4) we find

p cos <f — p L
cos d1 = — a i sin J

•or by (5)

cos d' — cos d1
=— (sin (5 cos d 1

— sin Z?)

2 sin J (<#' -f- ^1) sin J (d' — <^x ) = i sin tt (sin z7 — sin d cos d
x )

and with great accuracy for our present purpose,

7/ 7 i 7T sin z7 i 7T sin (5 (D.)
d' - dx

=———- _ —
sm « x con g?!

a formula easily put into tables, especially if we employ a mean
value of 7T, which will never produce an error of more than about

1". If any one, however, desires to compute this correction

directly, it may be done by the formula

v j at • jl s in A AT . sin 6 (D.)
a — a. =JS rr sm 9—

—

—N n sm d> .

v J

sm d l tan dx

in which

y (1 — e'
2
sin

2

0)

and we may employ without sensible error the value of N corre-

sponding to 0=45°, or log N=l. 8170, the compression being^.
The computation of this correction would be rendered at once
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simple and accurate in practice, if the • ephemeris contained the

log of

,T sin A sin d , T

sin a' tan a

(which is equivalent to a logarithm introduced by Bessel into his

ephemeris for the same purpose), for we should then have

cV — dj, = N' sin (p (7.)

4tii. Corrections for the Contraction of the Moon's and

Sun's semidiameters by Refraction.—The apparent distance

of the centres of the moon and sun
t
has been supposed above to

have been found in the usual manner from the observed distance

of the limbs, by adding the apparent semidiameters ; or when

the moon has been observed with a planet or star, by adding or

subtracting the moon's semidiameter alone, according as her

nearest or farthest limb has been observed. At low altitudes

the elliptical figure of the disc must be taken into consideration ;

for the refraction being different at points of the limb which

have different altitudes, the result is an apparent contraction of

every semidiameter, the vertical ones being the most, and those

perpendicular to the vertical the least contracted. It becomes

necessary to obtain a general expression for the contraction of

that semidiameter which lies in the direction of the distance, and

makes an angle q with the vertical circle. If we put

s = horizontal semidiameter of the moon -|- the augmentation,

s = the apparent vertical semidiameter

s' = " inclined "

A s = contraction of vertical " = s — s

A s/ = " inclined :< = s — s'

A r = difference of refractions at the centre of the moon and the.

observed point on the Jimb,

we have nearly

A s = A r cos q.

Bat the apparent altitude of the centre being h, A s is the dif-

ference of refractions at the apparent altitudes h and h -f- s , while

A r is the difference of refractions at h and h -f- s' cos q,



LONGITUDE. 71

whence
A s ! A r = s : s' cos q

A r = J—, z7 § cos q = A s cos q (nearly)

J's= A s cos 2
5 (8.)

a known formula which agrees very nearly with the hypothesis

that the figure of the disc is an ellipse. It is evident, however,

that the lower half of the disc is more flattened than the upper

half ; but if As be taken as the mean of the contractions of the

upper and lower vertical semidiameters, the preceding formula

will be in error only 0".4 at the altitude 10
D

, and 1".2 at 5°
; the

maximum values of As at those altitudes being respectively

107/ and 30
'. The changes of the thermometer and barometer

may also sensibly affect the value of As at low altitudes, but only

by 4" in the improbable case of the highest barometer and lowest-

thermometer, and h= 5°. It will hardly be necessary to attend

to this small error in practice ; nevertheless, it can readily be

done without any further reference to the refraction tables, for

the computer will already have before him r\ the mean value of

r', and Ar\ the sum of the corrections of r\ for barometer and

thermometer ; so that he may find at once the proportional cor-

rection of As' , which is

r '

Now the angle q is given by the formula

sin H — sin h cos d
cos q = ,

cos h sin a

and we have from the formula (A)

B' _ sinH A' sin h cos d

B {p — ?") cos h cos h sin d ' A (p — r') cos h cos h sin d
>

(B' . A\ 1
CQSg =

(iT+x) (p-Ocob*
-

If we assume A = 1, B = 1, we shall have

A' + B'
cos q = - 4 Y

\P — r
)
cos ' l

{p-r')*coH 2 h (E.)
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which is easily put into tables. A table with the arguments h

and p — r may give the value of

Astt

\jp — r'y cos -h

and a second table with the arguments A' -f- B' and " the num-
ber from the first table" may give A s'.

In order to ascertain the degree of accuracy of the formula

(E)
i
we observe that the errors in

k
cos q produced by taking

A = 1, B = 1, are

e=(A- 1*EL* *'=(!_ J)
sin ^

tan d
'

cos h sind'

the errors in cos 2q are

2 e cos 5 and 2 c cos g

and the errors in A s ' are therefore

2 A .% (^4—1) tan h cos q t
2 A s (1 — B) sin H cos q

tan rf cos h sin d

The greatest values of e
x
and e\ at different altitudes, are

shown as follows, taking cos q = 0, H= 90°, in order to repre-

sent the extreme cases :

h ex tan d e'\ sin d

o
5 0.45 0.02

10 0.16 0.00

15 .08 .00

30 .02 .00

50 .00 .00

It appears, therefore, that the error of the formula (E), like

that of (8), becomes sensible only at] those low altitudes where

extreme precision is unattainable on account of the uncertainty

of the refraction. We may therefore safely employ it as suf-

ficiently accurate for all cases.

When the sun is observed with the moon, a similar correction

must be applied to his semidiameter. If
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Q = angle at the sun,

S= true semidiameter of the sun,

S = apparent vertical semidiameter of the sun,

S' = " inclined

A S — contraction of vertical semidiameter =8 — S0i

A 8' = " inclined " === 8 - #',

then as above

A 8' = A S cos1

n sin h — sin H cos (7 / O D' \ 1_
C0S V— eoaJBBmd ~VC D ){E - P)

and assuming

C == 1, D= 1,

we have
a+ iy

cos R

cos Q
(jR' - P) cos IT

(i2' — i^) cos i/

which is even more accurate than (i7), and is put into tables in

the same manner.

The corrections A s' and A 8' should strictly be applied to the

semidiameter, and should appear in the value of a employed in

the computation A d; but since the values of A' , B', C , and

D' are required in finding A &' and A 8', we have to employ a

value of d which may in extreme cases be in error by about

30". This produces a small error in each of the terms A' , B',

C' f D', which could in practice be eliminated only by repeating

the computation with the corrected value of d. But this repeti-

tion is unnecessary, as the error in A d is rarely more than 0."5
;

and it will suffer to apply A s' and A 8' directly to d
x

.

In order, however, to show generally the effect upon A d of

small errors in d, let us differentiate the equation (C), regarding

the term x (of the second order) as constant, and taking A = 1,

B = 1, 0=1, D = 1 (which also amounts to considering

terms of the second order as constant). We find

a a J — C1 — r
) ( s*n ^ — s*n & G0S d} s ^n 1" ^ ^

sin "d
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_ {R — P) (sin H— sin h cos d) sin 1" <5 rf"~
am zd~

(5z/ d= — [(p — r) cos (/cos J?— (Til' — P) cosq cosh]
sin V 6 d

sin d
(9.)

This formula shows at once that the maximum of 6 A d occurs

when the two bodies are in the same vertical circle, the moon
being the higher body, for this condition gives cos q = — 1, cos

q = 1, so that the two terms obtain the same sign.

The following table shows the maximum effect upon A d of the

error of 1" in d, computed by formula (10), for the several values

of h and H; the least value of h —H {= d) being 20°.

H h

25° 35° 45° 55° 65° 75° 85° 90°

o / // // n a // // lt

5 3.6 2.4 1.9 1.5 1.3 1.2 1.1 1.1
15 3.2 2.2 1.7 1.4 1.2 1.1 1.0
25 2.9 2.0 1.5 1.3 1.1 1.0
35 2.6 1.8 1.4 1.1 1.0
15 2.2 1.5 1.2 1.0
55 m 1.8 1.2 1.0
65 .. •• 1.3 0.9

and at the same time p — r' and R' — P have their greatest

values. In this position, we have d = h — H> and the formula

for the maximum of 6 A d is therefore

sin 1'' 6 d
d A d = - [{p - V) cos H+ {& -P) cosh] -

m{h_Hy

This table of extreme errors shows clearly enough that the

error arising from the neglect of A s' and A S' in the value of d

employed in computing A d, is too small to require any departure

from the process already indicated. For the Navigator must

bear in mind that ail observations at very low altitudes are sub-

ject to two principal sources of error :—1st, the uncertainty of

the refraction, which no process of calculation can eliminate

;
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and 2d, the imperfect definition of the limb of the moon or sun

in the vicinity of the horizon. If a method of computation in-

volves only errors which in every case are less than these un-

avoidable errors, it satisfies the essential condition of a good

method.



CHAPTER VII.

THE COMPASS.

1. A magnetized needle or bar of steel balanced and allowed

to turn freely on a pivot, will take a position in a particular

direction, which is called the magnetic meridian.

The direction in which the north end points is the magnetic

north. It varies or declines from the true north differently at

different places on the earth ; and even at the same place at dif-

ferent times. Delicate observations show a small diurnal fluctua-

tion of a few minutes, also a progressive change or one of very

long period,—on the Atlantic coast of the United States, of 2' to

5' westerly in one year.

2. If a circular card marked with the horizon points be

attached to such a needle, its several points will deviate from

the corresponding points of the horizon, all by the same amount

and in the same direction.

Let P be any place,

N S its true meridian,

N ! S' its magnetic meridian,

N P' N' is the variation.

In Fig. 24 it is east, N' S' being to

the right of N S.
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3. The magnetic declination, or variation of the compass, at any

place, is the angle which the magnetic meridian of that place

makes with the true meridian. It is east, if the magnetic meri-

dian is to the right ; west, if the magnetic meridian is to the left

of the true meridian.

Fig. 25.

In Fig. 25 it is west, JV1 S' being to

the left of NS.
The point of view, or position from

which the observer is supposed to look,

being at P.

4. Let

be any object, terrestrial or celestial.

P 0, its horizontal direction from P.

A = NP 0, the true azimuth or bearing of from theN point
of the horizon.

A' = N' P 0, the magnetic bearing of from the magnetic
north.

D =N P N', the variation.

If towards the right be regarded as the positive direction of

these angles, and towards the left as the negative direction, we
have from both figures, and with in any position,

NP N' = NP - N' P O, or,

D =* A — A',

positive, or to the right, for Fig. 1
;

negative, or to the left, for Fig. 2.
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If A and A' denote bearings or angular distances from any

other points than the true north and magnetic north, for instance

the east or the west, we evidently still have

—

D= A - A';

or, translated into common language :

The magnetic declination, or variation, at any place is equaL

to the difference of the true and the magnetic bearings of any

object ; it is east if the number or point which expresses the

true bearing is to the right of the number or point which ex-

presses the magnetic bearing ; but west if to the left.*

5. From equation (1) we also have

A = A'-\-JD;

or, the variation must be applied to a compass bearing (or

course) to the right hand if east, to the left hand if west, in order

to find the true bearing (or course).

6. The same equation also gives

A' = A - D;

or, the variation must be applied to a true bearing (or course)

to the left hand if east, to the right hand if west, in order to find

the compass bearing (or course).

7. To find the variation, it is necessary to determine both the

true bearing and the magnetic bearing of some object ; at the

same instant if the object be in motion.

8. The true bearing or azimuth of a celestial object may be

found

—

First.—From an observation of its altitude (Prob. 1). This

may be used to the best advantage when the azimuth changes

most slowly with the altitude, t. e., when a given change or sup-

posed error of the altitude produces the least change of azimuth.

The most favorable position of any object is when its azimuth is

* The numbers or points are supposed to be read from tbe same compass card,,

the observer looking at them from the centre.
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nearest 90°
; the unavailable position is on the meridian. High

altitudes and great declinations, especially if of a different name
from the latitude of the place, are to be avoided.

Second.—When it is in the horizon, or its apparent altitude

above the sea horizon is 33'+ the dip, (Prob. ) its amplitude,

or bearing from the east or west point of the horizon, is readily

determined by the solution of a spherical right triangle ; or when
the declination is less than 23° 28', by Tab. VII. (Bowd.).

Third.—From the local time.

The most favorable time for a circumpolar star is that of its

greatest elongation from the meridian ; for other objects, when
they are on or near the prime vertical. A more exact knowl-

edge of the time is requisite, when the observation is made near

the time of meridian passage, especially at very high altitudes. _

Fourth.—From the measurement with a theodolite, or other

azimuth instrument, of the azimuth angle between the two posi-

tions of the body at the same altitude east and west of the

meridian.

9. The true bearing of a terrestrial object at any point may
be found, from the measurement

—

First.—With a theodolite, or other azimuth instrument, of the

horizontal angle ; or,

Second.—With a sextant, of the angular distance between the

terrestrial object and some celestial object, whose azimuth at

the same instant is found either from its altitude or the local

time*

It is not necessary to have two observers, or that the obser-

vations of altitudes and horizontal (or oblique) angles should be

simultaneous. One observer may measure an altitude, then the

horizontal (or oblique) angle, then another altitude, noting the

time. On the supposition that the altitudes increase or decrease

uniformly we have, as the interval of time between the observa-

* Sometimes called " an astronomical bearing'/'
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tious for altitude, is to the interval between the first observation

for altitude and the observation for hor. (or ob.) angle, so is the

difference of altitude to the reduction of the first altitude.

Measurements of the horizontal (or oblique) angle may be

made before and after the observation of altitude, and interpo-

lated in the same way.

10. When precision is requisite, it is necessary to keep in

mind

—

First.—That a change of the point of observation of .001 of the

distance of the terrestrial object may change its bearing more

than 3'.4.

Second.—That the higher the altitude of an object, the more

requisite is the careful adjustment of the instrument used in the

measurement of the horizontal angle.

Third.—That greater care is requisite in the measurement of

the direct angular distance, the greater the inclination to the

horizon of the oblique plane which passes through the two

objects ; the apparent altitude, or angle of elevation, of the terres-

trial object above the eye of the observer must also be deter-

mined.

Fourth,—That in measuring terrestrial angles with a sextant or

circle of reflection, the axis about which the index moves is the

proper centre of the instrument, and the reading should be

increased by the parallactic angle, which is inversely as the dis-

tance of the object seen direct.

For a distance of 500 feet it is about 1' in the common sex-

tant. But it is combined with the index correction, if the obser-

vation for the latter be made with an object at the same or nearly

the same distance.

These are important considerations in accurate surveys, and
in making with precision meridian lines.

Ordinarily the sun is the most convenient celestial object.

For use in connection with a compass, precision in the true

bearing to the nearest 5
' is generally sufficient.
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11. The magnetic bearing is observed directly with a compass.

The two chief forms of this instrument are th.e*surveyors com-

pass, in which the graduated circle revolves with the line of

sight, while the reading points, which are the extremities of the

needle, remain fixed

;

And the mariner's compass, and in its more refined form, the

azimuth compass, in which the graduated circle attached to the

needle remains fixed, while the pointer revolves with the line of

sight.

With the best surveyor's compasses a precision of 5', or with

the best azimuth compasses a precision of 10
'

, is rarely attainable.

12. To obtain even this degree of precision, it is necessary

—

First—To correct for the index-error of the instrument. This

correction is the same for all bearings ; and may be found for

each compass (and compass-card) by bearings of a number of

objects in different directions, whose true magnetic bearing has

been determined by more delicate instruments. Once carefully

found, it nay be marked as a constant correction.

If it is neglected, the bearings observed are " compass bear-

ings," and the variation found is the variation of that particular

compass ; in distinction from the true magnetic bearings and the

true magnetic declination.

Second.—To correct for eccentricity, or for the pivot not being

in the centre of the graduated circle.

With the surveyor's compass this error is eliminated by oppo-

site readings of the graduated circle.

Azimuth compasses are not sufficiently delicate for the refine-

ments of this correction. But the maximum error may be found

by measuring horizontal angles of about 90°, which have been
measured by a more reliable instrument.

Third.—To attend to the balancing of the needle or compass
card. Sealing wax dropped on that part of the card which re-

quires depression is sometimes used.

As the north end of the needle dips or is depressed in north

magnetic latitude, and the south end in south magnetic latitude,

readjustment is generally necessary after a considerable change
of latitude.



82 THEORETICAL NAVIGATION AND NAUTICAL ASTRONOMY.

Fourlh.—That the sight vane or vanes and their axis of rota-

tion should be parallel, also perpendicular to the graduated cir-

cle, if there be one on the compass box.

Observations on a plumb line, or other well defined vertical

line, made on the land, furnish a test of these adjustments.

Fifth—^-That at the instant of observation the sight vanes should

be vertical.

This is the more important the greater the elevation of the ob-

ject.

Azimuth compasses are furnished with a mirror attached to

the sight vane, so that objects of considerable elevation may be

observed by reflection. This mirror should be perpendicular to

the plane passing through the eye-vane and the thread of the

sight-vane, to which the mirror is attached. This may be tested

by observations on a well-defined vertical line on shore.

13. For ordinary sea purposes a precision of 30', or even 1°, is

sufficient. But even this requires some attention to the several

points of the last article.

It is desirable that all compasses on board ship should be

tested—those for steering as well as those for more delicate use,

and their errors noted or adjusted, if of sufficient importance.

The error arising from the motion of the ship is less sensible

if the plane of the gimbals coincide with that of the card (when

the instrument is at rest), and pass through the point of the

pivot. Generally, however, the pivot is placed above the gimbals

and the card, since it is necessarily above the centre of gravity

of the needle and its attachments.

14. Magnetic needles, when not suspended, should be put away
in pairs, parallel, and with the north pole of one against the

south pole of the other, and separated, either in different boxes

or by a piece of cork or soft wood.

15. Small pieces of iron in the vicinity of a compass may pro-

duce a sensible deflection of the needle. Ships have often wan-

dered far from their intended course from a few nails or a knife

or other small iron article being carelessly placed in a binnacle.

If two compasses are near each other the north pole of one
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needle repels the north and attracts the south pole of the other.

They will then be deflected, and both in the same direction (and

equally if equal magnets), unless their direction from each other

is N.E.S. or W. (magnetic). In some intermediate direction,

near four points from the meridian, the deflection will be the

greatest.

Hence the comparison of two compasses placed side by side

is an imperfect test of their agreement or accuracy. When two

binnacles are used they should be at least 4| feet apart. The
disagreement of the compasses placed in them is, however, not

wholly due to their influence upon each other, but to other

sources of disturbance.

16. Electricity will disturb the needle. If the glass cover be

rubbed with dry silk, a delicate compass may be rendered for the

time useless. A strong electric current may weaken the magnet-

ism of a needle, or even reverse its poles. Lightning may pro-

duce such a change.

17. On shore, in particular locations, very marked deviations

of the needle are observed.

In ships, particularly those of iron, and in a less degree those

which have iron as a part of their cargo or armament, there are

peculiar causes of disturbance. The observations of Professor

Airy show that a part of the iron is permanently magnetic, or

nearly so, changing only very slowly, and that another portion is

magnetic by induction, and varies with its position with refer-

ence to the meridian and in different magnetic latitudes.

A ship may be regarded as two assemblages of magnets, one

permanent, the other variable ; and each acting upon the com-

pass in any particular position as a single magnet, whose force

is the resultant of the combined forces of all its parts. The dis-

turbance will be different in different parts of the ship. Obser-

vations have been instituted on board of some iron ships for

determining the position where the compass is least disturbed.

The standard compass on board some ships is placed between

the binnacles, and elevated so as to command a view of the

horizon, to affect less the steering compass, and to be farther

above the level of the disturbing magnets.
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Fig. 26.

18. The deviation of the compass produced by these local

causes varies with the direction of the ship's head.

The resultant of the permanent magnet may be resolved into

two forces : one tending to draw * the N. pole of the needle

towards the ship's head, and having a maximum effect when the

ship heads E. or W. by compass ; the other tending to draw *

it towards the starboard side, and having a maximum effect when
the head is towards the N. or S. The variable magnet is regarded

by Prof. Airy as having its maximum effect when the ship heads

N.E., S.E., S.W., or N.W., by compass ; but this may not always

be the case.

19. To find the local deviation for different directions of the

ship's head, it is necessary as the ship turns round—either by
being swung round intentionally, or at sea in a calm, or with

light baffling winds, or at anchor by the tides—to observe the

bearing of some well-defined object as the head comes successively

to each point of the compass. The direc-

tion of the ship's head should be carefully

noted at the time of taking each bearing.

It is well to note it by the binnacle compass

as well as by that employed in the observa-

tions, f The compass must occupy the

same position during the whole series of ob-

servations, as the local deviation determined

is for that position only.

20. If the object be terrestrial and so dis-

tant, that the swinging of the ship produces

no sensible change in its actual direction

as seen from the position of the compass,

no other observations are necessary.

To ascertain what this distance must be

in a given case,

Let be the object, CC the extreme positions

of the compass, as the ship swings round the

point A.

* Or to repel it, in which, case the effect is regarded as negative,

f The heading by other compasses in different parts of the ship may also be

observed simultaneously.
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Put d = A C
;

D = A, the distance of the object
;

= A G, the parallactic angle.

We have

or, since is very small (in minutes),

=—A— = 3138- 4-D sin 1 ; i>

If d is expressed in feet and D in sea miles,

0= | = 0' .5648 -4-
6087 D sin V D

whence
0' X -5648 d

Examples.

(1) d = 300 ft,, Z> = 6 miles ; then = 28'.

(2) d = 500 ft., and it is desirable that shall not exceed 30';

.t A u i il O' X -5648 X 500 aA •-,

then D must not be less than —^— /x o^ 94 sea miles.

If the bearings have been taken as the ship headed at the in-

tended points, that is at equal intervals round the compass, the

mean of the whole series will be the true compass bearing ; the

difference of this mean from each observed bearing will be the

local deviation for the corresponding direction of the ship's

head, and should be marked east, if this mean bearing is to the

right of the observed ; west if the mean bearing is to the left of

the observed. A table of the local deviations may be formed by
writing in one column the direction of the ship's head, and in

another the corresponding deviations.

Or, the " ship's head by compass " may be laid off on a straight

line at proper intervals as abscissas, and the corresponding

deviations as ordinates, and a curve drawn through the several

points thus determined.

Or the differences of some conveniently assumed bearing from

the observed bearings, may be laid off as ordinates, and a line
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drawn parallel to the axis, and so as to divide the curve symme-

trically. The distance of the curve from this line at the several

points will be the local deviation.

The scale for the ordinates may be greater than that for the

abscissas.

This graphical method is more conveDient when the bearings

have not been taken as the ship headed at the intended points,

but at unequal intervals ; or if any have been omitted.

21. If the object be near, an observer may be stationed at it

who will make observations at the same times that the bearings

are taken on board the ship ; the instants being indicated by

some preconcerted signals made on board.

First.—With a theodolite carefully adjusted, and with its hori-

zontal limb clamped, he may direct the telescope towards the

position of the ship's compass, and read the instrument ; or

Second.—With a sextant he may measure the horizontal angles

between the ship's compass and some well-defined object, taking

into account, when necessary, the angles of elevation* of the two ;*

or

Third.—With a plane-table he may draw on paper lines in the

direction of the ship's compass, and measure the angles which

th*ey make with some lines drawn at pleasure ; or

Fourth.—With a good compass he may take reciprocal bear-

ings.

By any of these instruments the changes in the direction of

the ship's compass from the object (and as well, of the object

from the compass) are directly measured. These observations,

then, furnish the means of reducing the bearings observed on

board to what they would have been if made at a fixed position,

or upon an object whose direction was not varied.

* Let A and A' be the two angles of elevation, then the horizontal or azimuth

angle will be an angle of a spherical triangle, of which the two adjacent sides are

(90°

—

A) and (90°

—

A'), and the opposite side is the observed angular distance of

the two objects.
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Such fixed position, or rather its direction from the shore ob-

ject, is entirely arbitrary. That the reductions may be small,

and all applied in the same direction, and conveniently com-

puted, let the assumed zero line of direction be that for which the

shore instrument would read the smallest number of degrees

noted.*

The several readings or angles measured by the shore instru-

ments, diminished by this assumed number of degrees, are

respectively the parallactic reductions to be applied to the cor-

responding bearings observed with the compass on board the

ship. They are to be applied to the right when the zero line is

to the right of the actual line of direction ; to the left, when the

zero line is to the left of the actual line of direction.

This precept is easily demonstrated :

Ftg. 27.

S

Let O be the object.

C the position of the ship's compass.

C the position to which the bearings are to he reduced.

* If the readings are on different sides of a zero-point, the line of direction for

that zero-point is most convenient ; or the readings on one side may be increased

by 183° or 363°.
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Fig. 38.

S

CO is the line whose bearing is observed.

C 0, parallel to C , is the line whose bearing is required.

The reduction is the angle C0 = C OC.

In Fig. 27, 0Co is to the right of OC, and the reduction is to be

applied to the right.

In Fig. 28, C is to the left of C, and the reduction is to be
applied to the left.

This is evidently true, whatever may be the direction of the

meridian line NS.
The bearings observed on board the ship having been thus

reduced, they may be used as if they had been made on a very

distant object, and the local deviations computed and tabulated,

or plotted, as in Art. 20.*

* If a good chart of the harbor on a scale sufficiently large is available, the posi-

tion of the ship's compass at each observation may be found either by cross bear-

ings on two distant objects, or by measuring with a sextant the horizontal angles

between them ; and plotted upon the chart. The magnetic bearings of the shore

object may then be measured on the chart : the differences of these from the cor-

responding compass bearings will be the deviations.

In some harbors, poles or other well defined marks are placed so as to range with

a distant object on particular magnetic bearings, as each 5° or 1 point. With such

facilities, the observer on board has only to note the range, or between what two

ranges, and where between, in order to find the magnetic bearings with which to

compare his compass bearings.
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22. If a good compass is used at the shore station, and

its position may be regarded as free from any peculiar local

disturbance, the bearings observed with it may be assumed as

the true magnetic bearings of the ship's compass ; and the dif-

ferences of the opposites of these from the compass bearings ob-

served on board, may be taken as the deviations, and tabulated

or plotted.

The deviation is east, if the bearing by the shore compass is to the

right of the corresponding bearing by the ships compass ; west, if

the bearing by the shore compass is to the left of the corresponding

bearing by the ships compass.

This method is generally preferred, especially for iron ships,

where the local disturbance is large. It assumes that the shore

compass gives the magnetic bearing more truly than the mean

resultant of the observations made on board.

23. At sea the observations may be made on the sun, and to

better advantage when it is near the horizon. Its true azimuth

at each instant of observing its bearing by the compass must be

found either

—

First, By means of simultaneous altitudes ; or,

Second, By noting the local apparent times ; or,

Third, By altitudes at equal intervals of 10 m., 20 m., or 30 m.,

and the computed azimuths interpolated for the time of the com-

pass observation.

The differences of the true azimuths from the compass bear-

ings will be the declination combined with the deviation.

The mean of a series of observations made at equal intervals

round the compass will be the decimation of the compass used

;

the differences from that mean, the deviations for the several

directions of the ship's head. A graphical process may be used

similar to that described in Art. 20, and advantageously when
the series of observations is not symmetrical, or any of them
have been omitted.

24. To allow time for the needle to settle, and for several bear-
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ings to be taken, it is desirable to keep the ship's head steady

for a few minutes at each of the points selected.

Unless the deviations are great, observations on each of the

sixteen principal points are sufficient. Observations carefully

made on eight points may give a result sufficiently accurate for

the ordinary purposes of navigation. Very careful observations

on the four following points (by compass), N.E., S.E., S.W., and

N.W., have sometimes been used in default of others.

25. Prob. 1.—To find from an observed altitude the true

azimuth of a heavenly body at any place, the Greenwich
time of observation being known.

We have as in the figure (29) the

foliowing given :

P 31= p = 90° - d

P Z= 90° - L
Z31=z = 90 Q - h

to find the angle P Z 31.

From Spher. Trig. 164, 165, 166,

we have

sin h A= ,/ sin (s ~ b
)
sin (8- c)

sin b sin cv

cos i^__ / sin s sin (s— a)

* sin b sin c

tani^= / sin
(
s ~ b) sm

( s - c
)

* sin s sin (s — a)

Using the formula for the sine, and these values of the sides,

viz.

:

Co L, 90°- h, and 90° - d

we will have

siniZ= / cos \ {Co L + h + d) sin \ {Go L + h -d)
* cos L cos h
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or, if we put

Sf=\{Co L+h + d).

sin i Z= /cos & sin (ff - d) O

)

* cos £ cos h

Using the formula for the cosine and the following values for

the sides,

90° - L, 90° - h and p
we have

cos i Z= ^
cos \ (L -\- h -\- p) cos I (L j-h-p)

cos L cos h

or if we put

S" = \(L + h+p)

cos \ Z //cos S'' cos (S" — p)
* cos L cos h

(b.)

Using the formula for the tangent, with the following values

of the sides, viz.

:

Co L, p and z,

and putting
S» = i(CoL+p + z)

we have

tan i Z= / sin &" — Go L
)
sin (^

f

" ~ z
)

* sin S'" sin (S'" — p)

When
^is less than 90° use (a).

When
Z is greater than 90° use (b).

If greater accuracy is desired than is generally necessary at

sea, use (c).

The formula for the cos \ Z is generally used in case of the
sun in connection with A. M. and P. M. time sights. The data
required is the same as that for determining the hour angle. Z
is the true bearing or azimuth of the body, reckoned from the
north point of the horizon in north latitude, and from the south
point in south latitude. If reckoned as positive toward the east,

it must be negative toward the west.
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It is generally best to use the supplement of Z when it is

greater than 90°, as the readings of azimuth compasses are from

0° to 90°. If, when the altitudes are observed, the bearings of

the heavenly body be taken by an azimuth compass, by compar-

ing the magnetic and true bearings we may obtain the variation

and deviation of the compass combined. It is marked E when the

true bearing is to the right of the magnetic bearing, otherwise TV.

26. Problem 2.—To find the amplitude and azimuth of a

heavenly "body -when in the horizon, the Greenwich time

being given.

In Fig. 30, the body M be-

ing in the true horizon, W M
is its amplitude, NM its azi-

muth.

In the triangle P NM
t
right

angle at N, we have.

cos P 31= cos MN cos P N

cos p = sin d = cos Z cos L.

If a= amplitude= 90° - Z

cos Z= sin a = sin d sec L

27. Problem 3.—To find the altitude and azimuth of a

heavenly body at a given place and time.

In Fig. 31 we have given

P Z=90° - L
Z P M= t, the hour angle of body M.

P M==d0° -d, to find

ZM= 90° — h, and

P ZM= Zthe azimuth.

cos t= cot </>" tan d

tan 0" = tan d sec t (a.)

0'= <p" — L
.

sin d : sin h = sin 0" : cos (</> — L
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. , cos (0 — L) sm d
sin h = ^ -^

sm 0"

cos <p" : sin (0" — L) = cot £ : cot Z

cotZ= sin ^"- L^
eott

COS 0"

93

(6.)

(c.)

0" is marked N. or S. like the declination, and is the same quad-

rant as t (numerically).

In (a) if t = 6 h. 0" = 90° and (c) assumes the indeterminate

form ; from (a) we have, however

cot t

tan d

tan 0" sin t

which substituted in (c) gives

, ~ sin (0" — L) tan cZ

sin 0" sin £

which may be used when t = 6 h. nearly.

^ is the true bearing of the body reckoned from the elevated

pole. The negative value need not be used, however, by restrict-

ing Z numerically to 180°, and marking it E or JFlike t.
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Prob. 4.—To find the altitude -when azimuth is not re-

quired.

We have

sin h = sin L sin d -f- cos L cos d cos t

cos t = 1 — versin t.

Which substituted gives

sin h = sin L sin d -j- cos L cos d — cos X cos d versin t.

sin /i = cos (L — d) — cos £ cos d versin t.

Prob. 5.—To find the azimuth or true bearing of a terres-

trial object.

Fig. 32.

In Fig. 32, let

Z be the zenith or place of the observer
;

the terrestrial object

;

ifthe apparent place of some heavenly body
;

Z its azimuth ;

z the angleMZ 0,

or azimuth angle between the heavenly body and the object.

This angle may be obtained by direct measurement with a

theodolite, plane table, or graduated top of azimuth compass.
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Z is found as in Prob. 1, and we would have for the azimuth

of the terrestrial object

NZO=Z+ z.

Another method of determining the angle z, is by measuring

with a sextant or arc M 0, noting the time and measuring

simultaneously the altitude of M. Then measure the altitude of

the terrestrial object 0.

Let H' = 90° - ZM
y
the apparent altitude of M,

h' = 90° — Z 0, the apparent altitude of 0,

D, the distance M 0, corrected for index error of sextant,

and semidiameter of heavenly body.

We have then in the triangle MZ 0, the three sides given to

find z = M Z 0.

Using formula from Trigonometry for sine we obtain

sin iZ= . / sin i (J> + #' ~ h') sin j (D - H'+h')
^ cos H' cos h

for cosine

cos i Z= / CQS i (
H> + U + D) cos j{H' + h-D)

* cos H' cos h'

If is in the true horizon, or its measured altitude equals the

dip, the right triangle MHO' gives

cos z = cos H / = cos D sec H?

2, thus determined after sextant measurement, may be applied

as before to the computed azimuth of M
t
to obtain the azimuth

of the terrestrial object.



CHAPTER VIII.

REFRACTION.—DIP.—PARALLAX, AND SEMIDIAMETER.

1. When a raj of light passes obliquely from one medium to

another of different density, it is bent or refracted from a recti-

linear course. The ray before it enters the second medium is

called the incident ray, afterwards the refracted ray. The differ-

ence between the directions of these two rays is the refraction.

The angle which the incident ray makes with a normal to the

surface of the refracting medium, when the incident ray meets

it, is called the angle of incidence. The angle which the refracted

ray makes with the normal is the angle of refraction. The differ-

ence between these two angles is therefore the refraction.

Fig. 33.

M

In the figure (33), if S A is an incident ray upon the surface

B B' of a refracting medium, A G the refracted ray, and MN A
normal to the surface at A, S A 31 is the angle of incidence, C
A N or S' A M is the angle of refraction, and 8 A S' the re-

fraction. An observer situated anywhere along the line A C will

receive the ray as if it had come directly to his eye without re-
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fraction from S'. S' A C is called the apparent direction of the

ray.

2. It is shown in works upon optics, that refraction take place

according to the following general laws :

1st. When a ray of light falls upon a surface of any form,

which separates two media of different densities, the incident ray,

refracted ray, and normal to that surface at the point of inci-

dence, are in one plane.

2d. When a ray passes from a rarer to a denser medium, it is

refracted towards the normal ; and when a ray passes from a

denser to a rarer medium it is refracted from the normal.

3d. When the densities of the two media are constant, there

is a constant ratio between the sine of the angle of incidence

and the sine of the angle of refraction. If a ray passes from a

vacuum into a given medium, the number expressing this con-

stant ratio is called the index of refraction for that medium.

This index is always an improper fraction, being equal to the

sine of the angle of incidence divided by the sine of the angle

of refraction.

4dh. When a ray passes from one medium into another, the

sines of the angles of incidence and refraction are reciprocally

proportional to the indices of refraction of the two media.

3. Astronomical Refraction.—The rajs of light from a heaven-

ly body in coming to the observer must pass through our atmos-

phere. If the space between the star and the upper limit of the

atmosphere be regarded as a vacuum, or as filled with a medium
which exerts no sensible effect upon the direction of a ray of

light, the path of the ray until it reaches the atmosphere, will

be a straight line ; but upon entering the atmosphere will be

refracted toivards the normal to the surface of the atmosphere

at the point of incidence. The atmosphere not being of uniform

density, the ray is continually passing from a rarer to a denser

medium, so that its path becomes a curve concave towards the

earth.
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The apparent direction of the ray will be that of a tangent to

the curve at the point where it reaches the eye. The difference

in direction of this tangent and the ray before it reaches the

atmosphere is called the astronomical refraction.

The ray (Fig. 34) from the star S entering the earth's atmos-

phere at B is bent into the curve A B.

Fig. 34.

The observer at A sees it in the direction of the tangent A S'.

From the first law given, the vertical plane of the observer which

contains the tangent A S' must also contain the normal E C and

the incident ray B S. Hence refraction increases the altitude

of a heavenly body without changing its azimuth.

The angle Z A S is the apparent zenith distance of the heavenly

body. The angle EB S is, the angle of refraction, and Z A S,

the apparent zenith distance, is the angle of refraction. If we
represent the refraction by r, we have

r = EB S - ED 8'

and from the third law

sin E B S
m,

smZAS'
a constant ratio for a given condition of the atmosphere and a

given position of A.
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4. To find the refraction r.

In the figure, let

z = Z A S', the apparent zenith distance,

r = E B S - E I) S', the refraction,

u = Z C E,

Then

EDS'=ADC=ZAS' — Z CE= z- u

EB S=Z -u-\-r

sin E B S sin (z — u 4- r)= : ! £-= m
sin Z A S' sin Z

sin [z — u — r)] = m sin z.

sin [z — (it — r) ] -|- sin z m -|- 1

sin [z — (u — r)] — sin 2; m - 1

which by (109) Plane Trigonometry becomes

tan \ [z — (w — r) -|- z] m -f- 1

tan ^ [z — (u - r) — z] m — 1

which reduces to

tan [z — J (u — r)~\ m -\- 1

tan ^ — (u — r) m — 1

hence

tan i (u — r) = ^-^— tan [z — 4 (w< — r)] * '

In this u and r are both unknown, but are both small angles,

being when the zenith distance is 0, and increasing with the

zenith distance. Assuming that they vary proportionately, and

that
u
*
=

q
r

and substituting in (a) we have

tan i (q - 1) r=1^- tan J [z - J fa
- 1) r]

as J (g — 1) r is very small we may put

tan J (q — 1) r= | (g — 1) r sin 1"
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and have

"whence

Putting

i (q - 1) r sin 1"= —25 tan [z - J (? -1) r]

1-f-m

r = .

~ m
tan [z - \ (q - 1) r]

? - 1 sm 1" l-\-m z

2 1 - m

and

we have

(5 — 1) sin 1" 1-f-m

P= i(2-1)

r = u tan (2 — p ?*)

which is known as Bradley's Formula.

If at two given zenith distances z' and z" the refractions r' and

r" are formed by observations in a mean state of the atmosphere,

then we have the two equations

r' = n tan (2' — p r ),

r" = n tan (zn — ^) r")

;

and the two unknown quantities n and p may be found.

By comparing observations in this way at various zenith dis-

tances, the values of n and p are found to be very nearly the

same; so that the assumption made is found to be nearly

correct.

The values of n and p used in the computation of Table XII.

(Bowd.) are
n= 57".036 andp = 3

These values correspond to the height of

the barometer, b = 29.6 inches,

the thermometer, t = 50° Fahr.

5. Refraction in different conditions of the atmosphere is

nearly proportional to the density of the air ; and this density,

the temperature being constant in proportional to its elasticity
;

that is, to the height of the barometer. Then, if

A is the noted height of the barometer,

r, the refraction of Tab. XII.

A r, the barometer correction



REFRACTION. 101

- A r b

r
—

29.6

! A &
r + Jir==

-29T6
r

A b

A r (i->>

i

A p — 29.6
z? r = r

29.6

The correction for the barometer in Table XXXVI. (Bowd.) is

computed from the formulae.

The elastic force being constant, the densityjncreases by ¥
part for each degree of depression of the thermometer (Fahr.)

Hence, if

A/ r = the correction for the thermometer,

t = the noted temperature

A'r= 50°~ t
(r+A'r)

400 v ;

400" A' r= (50° - t{ (r + A' r)
,

= 50° r+ 50° A' r - tr — Art
350-° A r' -f A' r t = 50° r — * r

50° -*
J' r

350° -M

by which the correction for thermometer, Tab. XXXYI. (Bowd.),

is computed.

7. To find the radius of curvature of the path of a ray in

the earth's atmosphere.

By the radius of curvature, is meant the radius of a circle

which most nearly coincides with the curve.

If in Fig. 35 we consider the curvature to be uniform from B
to A, the problem is reduced to finding the radius of this arc.

Let C' be the centre of the arc A B,

R' = C A
y
the radius of curvature,

R = G A, the radius of the earth.
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S B' and S A' are tangents to the curve at the points B and A
respectively. The angle between the radii C'A and C' B is equal

to the angle made by these tangents with each other, which is

the refraction r. As A B is a very small arc, we may put

A B — R sin r

&n,d nearly
A D = A B = R' sin r

Fig. 35.

In the triangle ADC
R/ sin r

R '

sin w
~ sin (z -«)

whence

sm (u - r)

sin tt

sm r

and as u and r are small

R'— R
sin z r

But by preceding work

— =q andp
r

=*(«- 1) = 3

whence
3 = 7, u — 7 r
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so that

When

IB
sin z

0, or the star is at the zenith,

When
z = 90°, or the star is in the horizon,

B'=7 B

This is for a mean condition of the atmosphere for which the

values ofp and q were obtained. The curve is greatly varied for

extraordinary states of the atmosphere.

We have seen that infraction increases the apparent altitude

of a heavenly body. As a correction, therefore, to an observed

altitude, to obtain true altitudes, it is always subtractive.

DIP.

8. A plane, tangent to the earth's surface, is called the true

horizon. If an observer be elevated above the plane, the visual

ray will be tangent at some other point on the earth's surface.

If it were not for the effect of refraction, the angle between the

visual ray and the true horizon would be a correction to be

applied to an observed altitude to obtain true altitudes. The
effect of refraction is to determine this angle.

Fig. 36.

In Fig. 36, the most h
distant point visible from

A is H'' where the visual

ray A H' is tangent to

the earth's surface. The
apparent direction of H"
iaAH'. EA .ff" is called

dip of the horizon. It in-

creases in apparent alti-

tude, and as a correction

is subtractive.
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9. To find the dip of the horizon.

Let G be the centre of the earth

C the centre of the arc H" A
H" G C are in the same straight line, since the arcs

H" A and H" B are tangent to each other at H"
G A and C A are'perpendicular respectively to A JETand A H",

hence
HAH'=GAG' = AH, the dip.

If 7i = the height B A afeove the sea level,

CA= B+h
C A — 7 B, the radins of curvature of the arc H" A
GG' = 6 B.

In the triangle G A G\ by Plane Trigonometry, we have

sin i A H= y(6 B - J h) (i h)

7 B(B + h)

h is so small that it may be omitted when additive to B, and we

have

As i

2 A if is a

AH=

small angle

\ A JTsin 1" =

_ 2 /3/1 _
sin 1" V 7 ^

'3 ft

7i2

/

2

3/i

IB
, / 3

sin 1 IB Vhsm ± k
7 ^ sin 1' " 7ii

-

—

T„ J -A=r is a constant and may be computed. Its value
sm 1 V 7 B

will depend upon the value of R used. Bowditch uses the value

in Yince's Astronomy. The logarithm of the constant used by

him is 1.7712711.

log A H= 1.7712711 + i log h

h is expressed in feet, and A H found in seconds.

10. To find the distance of an object of known height just

visible in the horizon.

In figure of previous Art.

h = B A. the height of A
d = H" A, the distance of A.

As this arc is small, we shall have

d = H" G' A sin 1" X OA = 7 B X H" C' A sin 1" (a.)
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In the triangle C C A, we have

or nearly

sin \ H" C A = Jhh{X +hW*

J JB" C'^sinl"= J_ h

84 R

H" G' A sin l"=y_J}L

which substituted in (a) gives

d=7B

21 E

V
/ *

21 i*
Vl/ZRh

If c?, A and i2 are expressed in feet, in geographical miles

1
d =

6087
V 7/3 i* A

Table X., Bowd., is computed for d in statute miles. It would
be more useful to the Navigator if it were in geographical miles.

PARALLAX.

11. Change in direction due to change of position is called

Parallax. In astronomical observations, the observer is on the

surface of the earth. It is convenient to reduce them to the

earth's centre. The change in direction of a heavenly body, as

viewed from the earth's surface and from its centre, is called

geocentric parallax. Geocentric parallax may be denned as the

angle at the body subtended by that radius of the earth which

passes through the observer's position.

In Fig. 37, the geocentric par-

allax of the body S will be

S=ZAS-ZC S

This is regarding the earth as

a sphere, which is sufficiently

accurate for all nautical prob-

lems except the complete reduc-

tion of lunar distances, when the

spheroidal form of the earth

must be taken into consideration.

Fig. 37.
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12. To find the parallax of a body in the horizon H.

Let n = the parallax, called in this case the horizontal parallax,

d, the distance of the body from the centre of the earth,

then
R

Sin 7T = —
a

13. To find parallax of a heavenly body for a given alti-

tude.

In the triangle C S A, letting p = the parallax, we have

R sin zsm»=
d

Substituting in this the value of the horizontal parallax, gives

sin p = sin tt sin z

or nearly, as n and p are small angles,

p = it sin z

p = 7T COS h

The horizontal parallax n is given in the Nautical Almanac
i'or the sun, moon, and planets. From the figure it is evidently

the semidiameter of the earth as viewed from the body. As the

equatorial semidiameter of the earth is larger than any other, so

will be the equatorial horizontal parallax. This the Nautical

Almanac gives for the moon. For refined observations this will

Jiave to be reduced for the latitude of the observer.

Tables X., A., and XIV. are computed by the above formulae.

Table XIX., Bowd., contains a quantity to be subtracted from
59' 42", the remainder being the combined corrections of parallax

and refraction for the moon's altitude.

APPARENT SEMIDIAMETERS.

14. The apparent semidiameter of a body is the angle sub-

tended by its radius at the place of the observer. Observations

of the sun and moon with sextant are made by bringing either

the upper or lower limb in contact with the sea horizon, or (in

using the artificial horizon) by bringing two opposite limbs of

direct and reflected limbs together. The altitude of the centre



APPARENT SEMIDIAMETEES. 107

of the body being required, the angular semidiameter of the

heavenly body must be applied plus or minus, according to the

limb observed.

15. To find the apparent semidiameter of a heavenly
body.

Fig. 38.

In Fig. 38,

Let if be the body,

d == G M, its distance from

earth's centre,

d' = A M, its distance from A
S =MC B, its apparent semi-

diameter as viewed from C
S'=MA B'

}
its apparent semi-

diameter as viewed from .4

B = G A, the earth's radius

r = M B = M B', the linear

radius of the body.

For finding 8, the right triangle C B M gives

sin b = —

-

(a.)

Were the body 31 in the horizon of A, its distance from A and

C would be sensibly the same, so the angle S is called the hori-

zontal semidiameter.

From Art. 12, we have for the horizontal parallax

B 7 Bsm tt= — or d=
a sm 7r

which substituted in (a) gives

sin S = —- sin n

or

s=^«



108 THEORETICAL NAVIGATION AND NAUTICAL ASTRONOMY.

v
-p- is constant for any particular body, and representing it by

ra, we have
log S = log m -\- log n

The Nautical Almanac gives the semidiameters of the sun,

moon and planets.

16. To find S', the apparent semidiameter as seen from A, the

right triangle A B' Mgives

sin 8- = -
r

-

(»•)

d'

In the triangle G MA
sin MAG d

sin M G A= ~d

If
h=90° - ZAM, the apparent,

A'== 90° - Z G M, the true altitude of M.

cos h d

cos A' d'

d'=d eosh '

cos /l

which substituted in (b) gives

r cos h
sin #'

6? cos h'

T
substituting for -y its value from (a) we have

0l • cr COS h
sin a = sm 8 —

cos /i

CY . „ cos A

COS /l'

gives an approximate value for S't
when S and A are known.

As h < h', cos ^ > cos h' and consequently S ! > S, or the semi-

diameter increases with the altitude of the body. This excess

is called the augmentation, and is only sensible in the case of

the moon.

17. To find the augmentation of the moon's semidiameter.

COS li
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which by Plane Trigonometry (108) becomes

A s = ^ 2 sin i (h' -f h) sin \ (h' - h)

cos h'

ti — h= p, the parallax, and being small

2 sin \ (h' — h) = 2 sin \ p = p sin 1" = 7r cos h sin 1"

and as A S is small, we may take ^ Qi + 7i) = h,

and cos A for cos li' ; and then

A S= S 7T sin 1" sin h

and as

For the moon

A S=—- 7r
2 sin 1" sin /i.

It

: 0.2729: then
i2

J S== .000001323 7T
2
sin 7i.

Using the mean value of tt = 5T 20".

^ 5 =15". 65 sin/i.

Tab. XY. (Bowd.) is computed'from a formula nearly like this.



CHAPTER IX.

SEXTANT.—ARTIFICIAL HORIZON.

1. The optical principle of the construction of the sextant is

the following :
" If a raj of light suffers two successive reflec-

tions in the same plane by two plane mirrors, the angle between

the first and last directions of the raj is equal to twice the angle

of the two mirrors."

Fig. 39.

In Fig. 39, let M and m be the two mirrors. The direct and

reflected rajs are always found in the same plane—called the

plane of reflection. In order that the last direction of the ray

after suffering two reflections shall be in the same plane as the

first direction, the plane of reflection must be perpendicular to

both mirrors. In the diagram the plane of the paper is the

plane of reflection. The shaded lines M and m are the inter-

sections of this plane with the mirrors. Let 8 31 he the direct

raj falling upon the mirror M (lying in the direction M I). Let

Mm be the direction of the ray after the first reflection, and m
E its direction after the second reflection. Draw M B parallel
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to m E, M P perpendicular to M C, and M p perpendicular to

the mirror m. The angle S MB is the angle between the rays

S 31 and m E. The angle P Mp, being obviously equal to MC m,

is the angle between the mirrors. We have, then, to prove

SMB=2PMp.
If m, draw the perpendicular mn, Mmn = p Mm, is the angle

of incidence of the ray Mm on the mirror m ; nm E'

= p M B
is the angle of reflection of the same ray. The angle of incidence

and the angle of reflection being equal, we have

pMm = pMB = PMp-\- P MB

On the same principle we have

P Mm = P MS = S MB + P MB

Taking the difference of these two equations we have

P 31p = SMB - P Mp
hence

SMB = 2P Mp = 2 31 Cm.

2. This principle is applied in the sextant as follows : The
mirror Mi& attached to a bar MI, called the index bar, which

revolves upon a pivot at Min the centre of a graduated arc N.

The mirror 31 is firmly fixed at right angles to the plane of this

arc. The mirror 31 is called the index glass ; the mirror m the hori-

zon glass. Place the index bar in the position 31 so that the

two glasses are parallel. In this position an incident ray from

an object B will be reflected first to n o and then in the direc-

tion m E. The first and last directions of the ray will be paral-

lel. If, then, the object is so distant that two rays from it, B 31

and B' m, falling upon the two mirrors are sensibly parallel, the

the observer at E will receive the direct and reflected ray at the

same time, or will see two images of the same object in coinci-

dence,. Commence the graduation of the limb at 0, marking it

zero. Move the index bar to the position M 7, so that a ray

from the object /Sis reflected in the direction m E ; the observer

E sees the object B and S in coincidence, and the angle S 31

B
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between the two objects is equal to twice the angle through

which the index glass has been moved.

As the centre of rotation is at M, this angle will be twice the

angle M I.

If, now, the arc N be graduated, and the marking of the

graduation doubled, we can read at once the angle SMB. The
angles are read to a nicety by means of a vernier, on the index

bar at I.

THE VEKNIER.

3. Let M N, Fig. 40, be a portion of the limit of a circle, C B
the arm which revolves with the index glass about the centre of

the circle. At the end of this arm, construct a b graduated into

a number of divisions which occupy the space of n 1 of the limb.

The first line a is the zero of the vernier, and the reading is to

be determined from the position of this zero on the limb M N.
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If we put

x = the value of a division of the limb.

y = the value of a division of the vernier, we will have

(n — I) x = n y
hence

n - 1
y = xJ

n

and
1

x — y = x
n

The difference x — y is called the 7eas£ count of the vernier,

which is, therefore, th of a division of the limb. If the zero
n

of the vernier falls between the two graduations P and P -f 1,

the whole reading is P plus the fraction from P to a. To meas-

ure this fraction, m, observe that if the ?7ith division of the ver-

nier is in coincidence with a division of the limb, the fraction is

m X (
x — y) or — x - ln the figure the vernier is divided into

ten equal parts, equal to nine divisions of the limb, and if the 4th

division is in coincidence, the whole reading is P 4- —— x ; and if

4
x = 10', then the whole reading is P

-f-
——- . 10 = P -j- 4'. Sup-

pose that P is the division of the limb marked 35° 40', then the

reading is 35° 44'. The least count in this case is 1'. The frac-

tion is obtained in practice bj the numbers placed above (or

)elow) the divisions on the vernier.

Sextants generally read to 10" ; in other words the least count

10 '. From the above it will be seen that for this 60 divisions

>f the vernier equal 59 divisions of the limb. Verniers are

linetimes constructed (seldom for sextants) with the divisions

>n the vernier greater than those upon the limb. The only dif-

ference will be that the reading of the vernier will be in a direc-

ion opposite to that of the reading of the limb.

For the adjustments of the sextant see Chauvenet's Astronomy,

>p. 95 to 99, inclusive, or Bowd., pp. 133 -136. Circles of reflec-

tion and octants are similar in construction to the sextant.
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4. The artificial horizon is a small basin partially filled with

mercury, over which is placed a roof consisting of two plates of

glass fitted in a frame at right angles to each other. The roof is

to protect the surface of the mercury from wind and dust. The

best form have a wooden basin fitting inside of a metallic one.

A small funnel screws into a hole at one end of the wooden basin

;

a channel underneath conveys the mercury to the centre of the

basin. The funnel acts as a strainer, retaining a greaber portion

of the oxide. If the mercury be amalgamated with tin, all impuri-

ties will float upon the surface, and may be removed by passing

lightly over the surface the edge of a piece of paper.

If, in Fig. 41, B B' be the horizontal

surface of the mercury, S A a ray of

light from a heavenly body incident

upon the surface at A, it will appear to

an observer at E in the direction S' E.

The angular depression B A S' below

the horizontal plane is equal to S A B,

the altitude above this plane. If, then,

S E is a direct ray from the heavenly

body parallel to S A, and the observer

at E with a sextant makes the direct

image S and the reflected image S'

coincide, the reading of the sextant

will be S E S' = S A S' = 2 SAB.
The surface of the mercury being in the plane of the true

horizon, the altitude obtained has only to be corrected for

parallax and refraction, and in case the limit of a body has been

observed, for semidiameter. The index correction of the sex-

tant, as is obvious, must be applied to the reading of the sextant.

Parallax and refraction to the altitude of the body, and semi-

diameter to the altitude or diameter to the reading of the sextant.

The glasses in the roof should be made of plate glass with paral-

lel faces. To eliminate any error that may arise from a pris-

matic form of the glasses, observe one half of a set of altitudes

with one end of the roof towards the observer, and one half with

the other end towards the observer. In the case of equal alti-

tudes, keep the same end towards the observer.
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drawn from long experience, to aid in the better discharge of their official duties, and, at the

same time, to furnish other people with a book which is not technical, and yet thoroughly
professional. It throws light upon the Navy—its organization, its achievements, its interior

life. Everything is st ited as tersely as possible, and this is one of the advantages of the book,
considering that the experience and professional knowledge of twenty-five years' service,

are crowded somewhere into its pages."—Army and Navy Journal.

MANUAL OF THE BOAT EXERCISE at the U. S. Naval Acad-
emy, designed for the practical instruction of the Senior Class in

Naval Tactics. iSmo. Flexible Cloth. 75c.

MANUAL OF INTERNAL RULES AND REGULATIONS
FOR MEN-OF-WAR. By Commodore U. P. Levy, U. S. N.,

late Flag-Officer commanding U. S. Naval Force in the Mediter-
ranean, &c. Flexible blue cloth. Third edition, revised and en-

larged. 50 cents.

"Among the professional publications for which we are indebted to the war, we willingly give

a prominent place to this useful little Manual of Rules and Regulations to be observed on board
of ships of war. Its authorship is a sufficient guarantee for its accuracy and practical value

and as a guide to young officers in providing for the discipline, police, and sanitary government
of the vessels under their command, we know of nothing superior."—N. Y. Herald.

TOTTEN'S NAVAL TEXT-BOOK. Naval Text-Book and Dic-
tionary, compiled for the use of the Midshipmen of the U. S.

Navy. By Commander B.
J.

Totten, U. S. N. Second and revised

edition. 1 vol., i2mo. $3.

"This work is prepared for the Midshipmen of the United States Navy. It is a complete

manual of instructions as to the duties which pertain to their office, and appears to have been
prepared with great care, avoiding errors and inaccuracies which had crept into a former edition

cf the work, and embracing valuable additional matter. It is a book which should be in the

hands of every midshipman, and officers of high rank in the navy would often find it a useful

x>mpanion."—Boston Journal.

UCE'S SEAMANSHIP : Compiled from various authorities, and
Illustrated with numerous Original and Selected Designs. For

the use of the United States Naval Academy. By S. B. Luce, Lieu-

tenant-Commander U. S. N. In two parts. Fourth edition, revised

and improved. 1 vol., crown octavo. Half Roan. $7.50.

LESSONS AND PRACTICAL NOTES ON STEAM. The Steam-
Engine, Propellers, &c, &c, for Young Marine Engineers, Stu-

dents, and others. By the late W. R. King, U. S. N. Revised by

Chief-Engineer
J. W. King, U. S. Navy. Twelfth edition, enlarged

Svo. Cloth. $2.

L



22 I). Van 2sustraia£$ Publications.

STEAM FOR THE MILLION. A Popular Treatise on Steam and
its Application to the Useful Arts, especially to Navigation. By J.

H. Ward, Commander U. S. Navy. New and revised edition, l

vol., 8vo. Cloth. $i.

I^HE STEAM-ENGINE INDICATOR, and the Improved Mano-
meter Steam and Vacuum Gauges : Their Utility and Application.

By Paul Stillman. New edition, i vol., 12 mo. Flexible cloth.

$1.

C CREW PROPULSION. Notes on Screw Propulsion, its Rise and
*>3 History. By Capt. W. H. Walker, U. S. Navy. 1 vol., 8vo.

Cloth. 75 cents.

POOR'S METHOD OF COMPARING THE LINES AND
DRAUGHTING VESSELS PROPELLED BY SAIL OR

STEAM, including a Chapter on Laying off on the Mould-Loft
Floor. By Samuel M. Poor, Naval Constructor. 1 vol., 8vo, with

illustrations. Cloth. $5.

HARWOOD'S LAW AND PRACTICE OF UNITED STATES
NAVAL COURTS-MARTIAL. By A. A. Harwood, U. S. N.

Adopted as a Text-Book at the U. S. Naval Academy. 8vo. Law
binding. $4.

pLEET TACTICS UNDER STEAM. By Foxkall A. Parker
I Captain U. S. Navy. i8mo. Cloth. Illustrated. $2.50.

NAUTICAL ROUTINE AND STOWAGE. With Short Rules in

Navigation. By John McLeod Murphy and Wm. N. Jeffers,

Jr., U. S. N. 1 vol., 8vo. Blue cloth. $2.50.

CTUART'S NAVAL DRY DOCKS OF THE UNITED STATES.
^ By Gen'l C. B. Stuart. Illustrated with twenty-four fine engravings

on steel. 4th edition. 4 to. Cloth. $6.

HTREATISE ON THE MARINE BOILERS OF THE UNITED
i STATES. By H. H. Bartol. Illustrated. 8vo. Cloth. 81.50.

DEAD RECKONING; Or, Day's Work. Bv Edward Barrett,

U. S. Navy. 8vo. Flexible cloth. $1.25.'

SUBMARINE WARFARE, DEFENSIVE AND OFFENSIVE. Com-
prising a full and complete History of the invention of the Torpedo,

its employment in War, and results of its use. Descriptions of th/s

various forms of Torpedoes, Submarine Batteries and Torpedo Boa's

actually used in War. Methods of ignition by Machinery, Cc:

Fuzes, and Electricity, and a full account of experiments made tc

determine the Explosive Force of Gunpowder under Water. Also a

discussion of the offensive Torpedo system, its effect upon Iron-Clad

Ship systems, and influence upon Future Naval Wars. By Lieut.-

Commander John S. Barnes, U. S. N. With illustrations. 1 vol,

8vo. Clo. $5.00.



Scientific Books.

| 'RANCIS'
(J.

B.) Hydraulic Experiments. Lowell Hydraulic Ex-
i- periments—being a Selection from Experiments on Hydraulic

Motors, on the Flow of Water over Weirs, and in Open Canals ot

Uniform Rectangular Section, made at Lowell, Mass. By J. B.

Francis, Civil Engineer. Second edition, revised and enlarged, in-

cluding many New Experiments on Gauging Water in Open Canals,,

and on the Flow through Submerged Orifices and Diverging Tubes.
With 23 copperplates, beautifully engraved, and about 100 new
pages of text. 1 vol., 4to. Cloth. $15.

Most of the practical riles given in the hooks on hydraulics have heen determined from ex

periments made in other countries, with insufficient apparatus, and on such a minute scale, that

In applying them to the large operations arising in practice in this country, the engineer cannot

but doubt their reliable applicability. The parties controlling the great water-power furnished

by the Merrimack River at Lowell, Massachusetts, felt this so keenly, that they have deemed it

necessary, at great expense, to determine anew some of the most important rules for gauging

the flow of large streams of water, and for this purpose have caused to be made, with great care,

several series of experiments on a large scale, a selection from which are minutely detailed in

this volume.

The work is divided into two parts—Part I., on hydraulic motors, includes ninety-two exper.

ments on an improved. Fourneyron Turbine Water-Wheel, of about two hundred horse-power,

with rules and tables for the construction of similar motors :—Thirteen experiments on a inodei

of a centre-vent water-wheel of the most simple design, and thirty-nine experiments on a centre

vent water-wheel of about two hundred and thirty horse-power.

Part II. includes seventy-four experiments made for the purpose of determining the form ot

the formula for computing the flow of water over weirs ; nine experiments on the effect of back-

water on the flow over weirs ; eighty-eight experiments made for the purpose of determining

the formula for computing the flow over weirs of regular or standard forms, with several tables

of comparisons of the new formula with the results obtained by lormer experimenters ; five ex-

periments on the flow over a dam in v/hich the crest was of the same form as that built by the

Essex Company across the Merrimack River at Lawrence, Massachusetts ; twenty-one experi-

ments on the effect of observing the depths of water on a weir at different distances from tha

weir; an extensive series of experiments made for the purpose of determining rules for gaug-

ing streams of water in open canals, with tfMes for facilitating the same ; and one hundred and

»ne experiments on the discharge of water through submerged orifices and diverging tubes, the

jphole being mlly illustrated by twenty-three double plates engraved on copper.

In 1S55 the proprietors of the Locks and Canals on Merrimack River, at whose expense most

of the experiments were made, being willing that the public should share the benefits of the

scientific opeiations promoted by them, consented to the publication of the first edition of this

work, which contained a selection of the most important hydraulic experiments made at Lowell

up to that time. In this second edition the principal hydraulic experiments made there, subse-

luent to 1S55, have been added, including the important series above mentioned, for determin-

ing rules for the gauging the flow of water in open canals, and the interesting series on the flo*

through a submwged Venturi's tube, in which a larger flow was obtained than any we find re-

corded.

FRANCIS (J. B.) On the Strength of Cast-iron Pillars, with Tables

for the use of Engineers, Architects, and Builders. By James Bd

Francis, Livil Engineer. 1 vol., 8vo. Cloth. $2.
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OLLEY'S RAILWAY PRACTICE. American and European
Railway Practice, in the Economical Generation of Steam, in-

cluding the materials and construction of Coal-burning Boilers,

Combustion, the Variable Blast, Vaporization, Circulation, Super-

heating, Supplying and Heating Feed-water, &c, and the adaptation

of Wood and Coke-burning Engines to Coal-burning ; and in Per-

manent Way, including Road-bed, Sleepers, Rails, Joint Fastenings,

Street Railways, &c, &c. By Alexander L. Holley, B. P. With

77 lithographed plates, i vol., folio. Cloth. $12.

44 This is an elaborate treatise by one of our ablest civil engineers, on the construction and nw
of locomotives, with a few chapters on the building of Railroads. * * * All these subjects

are treated by the author, who is a first-class railroad engineer, in both an intelligent and intelli-

gible manner. The facts and ideas are well arranged, and presented in a clear and simple etyle,

accompanied by beautiful engravings, and we presume the work will be regarded as indispens-

able by all who are interested in a knowledge of the construction of railroads and rolling stock,

or the working of locomotives."—Scientific American.

HENRICI (OLAUS). Skeleton Structures, especially in their Appli-

cation to the Building of Steel and Iron Bridges. By Olaus
Henrici. With folding plates and diagrams. 1 vol., 8vo. Cloth.

$3.

WHILDEN (J.
K.) On the Strength of Materials used in En-

gineering Construction. By
J. K. Whilden. i vol., i2mo.

Cloth. $2.

44 We find in this work tables of the tensile strength of timber, metals, stones, wire, rope,

hempen cable, strength of thin cylinders of cast-iron ; modulus of elasticity, strength of thick

cylinders, as cannon, &c, effects of reheating, &c, resistance of timber, metals, and stone to

crushing; experiments on brick-work; strength of pillars; collapse of tube; experiments on
punching and shearing ; the transverse strength of materials ; beams of uniform strength ; table

of coefficients of timber, stone, and iron ; relative strength of weight in cast-iron, transverge

strength of alloys ; experiments on wrought and cast-iron beams : lattice girders, trussed cast-

iron girders ; deflection of beams ; torsional strength and torsional elasticity."—American Ar-

tisan.

CAMPIN (F.) On the Construction of Iron Roofs. A Theoretical

and Practical Treatise. By Francis Campin. With wood-cuts and
plates of Roofs lately executed. Large 8vo. Cloth. $3.

BROOKLYN WATER-WORKS AND SEWERS. Containing a

Descriptive Account of the Construction of the Works, and also

Reports on the Brooklyn, Hartford, Belleville, and Cambridge
Pumping Engines. Prepared and printed by order of xe Board of

Water Commissioners. With illustrations. 1 vol., folio. Cloth.

$15.

ROEBLING (J. A.) Long and Short Span Railway Bridges. By
John A. Roebling, C. E. Illustrated with large copperplate en-

gravings of plans and views. Imperial folio, cloth. §25.

CLARKE (T. C. ) Description of the Iron Railway Bridge across

the Mississippi River at Q.uincy, Illinois. By Thomas Curt?k
• Clarke, Chief Engineer. Illustrated with numerous lithographed

plans. 1 vol., 4to. Cloth. $7.50.
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WILLIAMSON (R. S.) On the Use of the Barometer on Survey*
and Reconnaissances. Part I. Meteorology in its Connection

with Hypsometry. Part II. Barometric Hypsometry. By R. S.

Willia.vsox, Bvt. Lieut. -Col. U. S. A., Major Corps of Engineers.

With Illustrative Tables and Engravings. Paper No. 15, Professional

Papers, Corps of Engineers. 1 vol., 4to. Cloth. $15.
" San Francisco, Cal., Feb. 27, 1887.

'Gen. A. A. Humphreys, Chief of Engineers, XJ. S. Army:
" General—I have the honor to submit to you, in the following pages, the results of my in-

vestigations in meteorology and hypsometry, made with the view of ascertaining how far tha

barometer can be used as a reliable instrument for determining altitudes on extended lines oi

•urvey and reconnaissances. These investigations have occupied the leisure permitted me from

my professional duties during the last ten years, and I hope the results will be deemed of suffix

jcient value to have a place assigned them among the printed professional papers of the United

States Corps of Engineers. Very respectfully, your obedient servant,

"R. S. WILLIAMSON,
"Bvt. Lt.-Col. TJ. S. A., Major Corps of TJ. S. Engineers. rt

TUNNER (P.) A Treatise on Roll-Turning for the Manufacture ot

Iron. By Peter Tunner. Translated and adapted. By John B.

Pearse, of the Pennsvlvania Steel Works. With numerous engrav-

ings and wood-cuts. 1 vol., 8vc, with 1 vol. folio of plates. Cloth. $10

SHAFFNER (T. P.) Telegraph Manual. A Complete History and
Description of the Semaphoric, Electric, and Magnetic Telegraphs

of Europe, Asia, and Africa, with 625 illustrations. By Tal. P.

Shaffxer, of Kentucky. New edition. 1 vol., 8vo. Cloth. 850pp.
$6.50.

MINIFIE (WM.) Mechanical Drawing. A Text-Book of Geomet-
rical Drawing for the use of Mechanics and Schools, in which

the Definitions and Rules of Geometry are familiarly explained ; the

Practical Problems are arranged, from the most simple to the more
complex, and in their description technicalities are avoided as much
as possible. With illustrations for Drawing Plans, Sections, and
Elevations of Buildings and Machinery ; an Introduction to Isomet-

rical Drawing, and an Essay on Linear Perspective and Shadows.

Illustrated with over 200 diagrams engraved on steel. By Wm
Mixifis, Architect. Seventh edition. With an Appendix on the

Theory and Application "of Colors. 1 vol., Svo. Cloth. $4.
*• It is the be-^t work on Drawing that we have ever seen, and is especially a text-book of Geo-

metrical Drawing for the use of Mechanics and Schools. No young Mechanic, such as a Ma-

chinist. Engineer, Cabinet-Maker, Millwright, or Carpenter should be without it."—Scientific

American.
" One of the most comprehensive works of the kind ever published, and cannot but possesi

great value to builders. The style is at once elegant and substantial.
1'—Pennsylvania Ir>qui*w.

" Whatever is said is rendered perfectly intelligible by remarkably well-executed diagrams on

ieel. leaving nothing for mere vague supposition ; and the addition of an introduction to iso-

metrical drawing, linear perspective, and the projection of shadows, winding up with a useful

aidex to technical terms."

—

Glasgow Mechanics' Journal.

%W° The British P^vernment has arthorized the use of this book in their schools of art at

Somerset House, London, and throughout the kingdom.

MINIFIE (WM.) Geometrical Drawing. Abridged from the octavo

edition, for the use of Schools. Illustrated with 48 steel plates.

Xew edition, enlarged. 1 vol., i2mo, cloth. $2.

" It is well adapted at a text-book of drawing tc be used in our High Schools and Academiei

Wfeere th .8 useful branch of the fine arts has beer hitherto too much neglected."—Boston Journa*
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PEIRCE'S SYSTEM OF ANALYTIC MECHANICS Physical

and Celestial Mechanics, by Benjamin Peirce, Perkins Professol

of Astronomy and Mathematics in Harvard University, and Con-
sulting Astronomer of the American Ephemeris and Nautical Al-

manac. Developed in four systems of Analytic Mechanics, Celestial

Mechanics, Potential Physics, and Analytic Morphology, i vol.,

4to. Cloth. $10.

C^
ILLMORE. Practical Treatise on Limes, Hydraulic Cements, and

J Mortars. Papers on Practical Engineering, U. S. Engineer De-
partment, No. 9, containing Reports of numerous experiments con-

ducted in New York City, during the years 1858 to 1861, inclusive.

By Q. A. Gillmore, Brig. -General U. S. Volunteers, and Major U.
S. Corps of Engineers. With numerous illustrations. One volume,
octavo. Cloth. $4.

ROGERS (H. D.) Geology of Pennsylvania. A complete Scien-

tific Treatise on the Coal Formations. By Henry D. Rogers,
Geologist. 3 vols., 4to., plates and maps. Boards. $30.00.

BURGH (N. P.) Modern Marine Engineering, applied to Paddle
and Screw Propulsion. Consisting of 36 colored plates, 259

Practical Woodcut Illustrations, and 403 pages of Descriptive Matter,

the whole being an exposition of the present practice of the follow

ing firms : Messrs. J. Penn & Sons ; Messrs. Maudslay, Sons, &
Field ; Messrs. James Watt & Co. ; Messrs. J. & G. Rennie ; Messrs.

R. Napier & Sons ; Messrs. J. & W. Dudgeon ; Messrs. Ravenhill

& Hodgson ; Messrs. Humphreys & Tenant ; Mr.
J. T. Spencer,

and Messrs. Forrester & Co. By N. P. Burgh, Engineer. In one
thick vol., 4to. Cloth. $25.00. Half morocco. $30.00.

ING. Lessons and Practical Notes on Steam, the Steam-Engine,
Propellers, &c. , &c, for Young Marine Engineers, Students,

and others. By the late W. R. King, U. S. N. Revised by Chief-

Engineer J.
W. King, U. S. Navy. Twelfth edition, enlarged. 8vo.

Cloth. $2.

ARD. Steam for the Million. A Popular Treatise on Steam and
its Application to the Useful Arts, especially to Navigation. By

J.
H. Ward, Commander U. S. Navy. New and revised edition.

1 vol., 8vo. Cloth. $1.

WALKER. Screw Propulsion. Notes on Screw Propulsion, its

Rise and History. By Capt. W. H. Walker, U. S. Navy. 1

vol., 8vo. Cloth. 75 cents.

THE STEAM-ENGINE INDICATOR, and the Improved Mano-
meter Steam and Vacuum Gauges ; Their Utility and Application.

By Paul Stillman. New edition. 1 vol., i2mo. Flexible cloth.

$1.

SHERWOOD. Engineering Precedents for Steam Machinery. Ar-

ranged in the most practical and useful manner for Engineers. By
B. F. Isherwood, Civil Engineer U. S. Navy. With illustration*

Two volumes in one. 8vo. Cloth. $2.50.
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POOR'S METHOD OF COMPARING THE LINES AND
DRAUGHTING VESSELS PROPELLED BY SAIL OR

STEAM, including a Chapter on Laying off on the Mould-Loft
Floor. By Samuel M. Pook, Naval Constructor. i vol., 8vo.

With illustrations. Cloth. $5.

SWEET (S. H.) Special Report on Coal ; showing its Distribution,

Classification and Cost delivered over different routes to various

points in the State of New York, and the principal cities on the

Atlantic Coast. By S. H. Sweet. With maps. 1 vol., 8vo. Cloth.

$3-

ALEXANDER (J. H.) Universal Dictionary of Weights and Meas-
ures, Ancient and Modern, reduced to the standards of the United

States of America. By J. H. Alexander. New edition. 1 vol.,

8vo. Cloth. $3.50.

" As a standard work of reference this book should be in every library ; it is oue which we
have long wanted, and it will save us much trouble and research."—Scientific American*,

CRAIG (B. F. ) Weights and Measures. An Accouni; of the Deci-

mal System, with Tables of Conversion for Commercial and Scien-

tific Uses. By B. F. Craig, M. D. i vol., square 32mo. Limp
cloth. 50 cents.

" The most lucid, accurate, and useful of all the hand-books on this subject that we have yet

seen. It gives forty-seven tables of comparison between the English and French denominations

of length, area, capacity, weight, and the centigrade and Fahrenheit thermometers, with clear

instructions how to use them ; and to this practical portion, which helps to make the transition

os easy as possible, is prefixed a scientific explanation of the errors in the metric system, and

Low they may be corrected in the laboratory."

—

Nation.

BAUERMAN. Treatise on the Metallurgy of Iron, containing

outlines of the History of Iron manufacture, methods of Assay,

and analysis of Iron Ores, processes of manufacture of Iron and
Steel, etc., etc. By H. Bauerman. First American edition. Re-
vised and enlarged, with an appendix on the Martin Process for

making Steel, from the report of Abram S. .Hewitt. Illustrated

with numerous wood engravings. i2mo. Cloth. $2.50.

" This is an important addition to the stock of technical works published in this country. It

embodies the latest facts, discoveries, and processes connected with the manufacture of iron

»nd steel, and should be in the hands of every person interested in the subject, as well as la all

technical and scientific libraries."—Scientific American.

HARRISON. Mechanic's Tool Book, with practical rules and sug-

gestions, for the use of Machinists, Iron Workers, and others.

By W. B. Harrison, associate editor of the "American Artisan."

Illustrated with 44 engravings. i2mo. Cloth. $2.50.

11 This work is specially adapted to meet the wants of Machinists and workers in iron gener-

ally. It is made up of the work-day experience of an intelligent and ingenious mechanic, wh«
had the faculty of adapting tools to various purposes. The practicability of his pWs ar 3. sug-

gestions are made apparent even to the unpractised eye by a series of well-exeeutea woofi eu-

graYmgs."—Philadelphia Inquirer.
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PLYMPTON. The Blow-Pipe : A System of Instruction in its prao
tical use, being a graduated course of Analysis for the use of

students, and all those engaged in the Examination of Metallic

Combinations. Second edition, with an appendix and a copioui

index. By George W. Plympton, of the Polytechnic Institute,

Brooklyn. i2mo. Cloth. $2.

w This manual probably has no superior in the English language as a text-book for beginners,

©r as a guide to the student working without a teacher. To the latter many illustrations of the

ntensils and apparatus required in using the blow-pipe, as well as the fully illustrated descrto-

Aon. of the blow-pipe flame, will be especially serviceable."—New York Teacher.

NUGENT. Treatise on Optics : or, Light and Sight, theoretically

and practically treated ; with the application to Fine Art and- In-

dustrial Pursuics. By E. Nugent. With one hundred and three

illustrations. i2mo. Cloth. $2.

" This book is of a practical rather than a theoretical kind, and is designed to afford accurati

and complete information to all interested in applications of the science."—Bound Table.

SILVERSMITH (Julius).
#
A Practical Hand-Book for Miners, Met-

allurgists, and Assayers," comprising the most recent improvements
in the disintegration, amalgamation, smelting, and parting of the

Precious Ores, with a Comprehensive Digest of the Mining Laws.
Greatly augmented, revised, and corrected. By Julius Silversmith.

Fourth edition. Profusely illustrated. 1 vol., 12 mo. Cloth. $3.

T ARRABEE'S CIPPIER AND SECRET LETTER AND TELE-
J-J GRAPHIC CODE. By C. S. Larrabee. i8mo. Cloth. $1.

BRUNNOW. Spherical Astronomy. By F. Brunxow, Ph. Dr.

Translated by the Author from the Second German edition. 1

vol., 8vo. Cloth. $6.50.

CHAUVENET (Prof. Wm.) New method of Correcting Lunar Dis-

tances, and Improved Method of Finding the Error and Rate of a

Chronometer, by equal altitudes. By Wm. Chauvenet, LL.D. i

vol., 8vo. Cloth. $2.

DOPE. Modern Practice of the Electric Telegraph. A Handbook for
* Electricians and Operators. By Frank L. Pope. Fourth edition.

Revised and enlarged, and fully illustrated. 8vo. Cloth. $2.

AS WORKS OF LONDON. By Zerah Colburn. i2mo. Boards,

60 cents.

HEWSON. Principles and Practice of Embanking Lands from

River Floods, as applied to the Levees of the Mississippi. By

William Hewson, Civil Engineer. 1 vol., 8vo. Cloth. $2.

"This is a valuable treatise on the principles and practice «f embanking lands from rivei

ioods, as applied to Levees of the Mississippi, by a highly intelligent and experienced engineer.

The author says it is a first attempt to reduce to order and to rule the design, execution, and

measurement of the Levees of the Mississippi. It is a most useml and need^v. contribution "A

-•.ientific literature "—Philadelphia, livening Journal.
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IXfEISBACH'S MECHANICS. New and revised edition. A Manual
of the Mechanics of Engineering, and of the Construction of Ma-

chines. By Julius Weisbach, Ph. D. Translated from the fourth

augmented and improved German edition, by Eckley B. Ooxe, A. M.,

Mining Engineer. Vol. I.—Theoretical Mechanics, i vol. Svo,

i, i co pages, and 902 wood-cut illustrations, printed from electrotype

copies of those of the best German edition. £io.

Abstract of Contents.—Introduction to the Calculus—The Gen-
eral Principles of Mechanics—Phoronomics, or the Purely Mathe-
matical Theory of Motion—Mechanics, or the General Physical

Theory of Motion—Statics of Rigid Bodies—The Application ol

Statics to Elasticity and Strength—Dynamics of Rigid Bodies—Statics

of Fluids—Dynamics of Fluids—The Theory of Oscillation, etc.

"Tho present edition is an entirely new work, greatly extended and very mnch improved. It forms a

text-book -vhich must find its way into the hands, not only of every student, but of every engiE.oyr wh«
3e=ires to reireah his memory or acquire clear ideas on doubtful points."

—

The Tschnoloyid.

HUNT (R. M.) Designs for the Gateways of the Southern Entrances

to the Central Park. By Richard M. Hunt. With a descrip-

tion of the designs. 1 vol., 4to. Illustrated. Cloth. $5.

SILVER DISTRICTS OF NEVADA. Svo., with map. Paper.

35 cents.

McCORMICK (R. C.) Arizona : Its Resources and Prospects.

By Hon. R. C. McCormick. With map. Svo. Paper. 25 cents,

CIMM'S LEVELLING. A Treatise on the Principles and Practice ol

^ Levelling, showing its application to purposes of Railway Engineer-

ing and the Construction of Roads, &c. By Frederick W. Simus,

C. E. From the fifth London edition, revised and corrected, with

the addition of Mr. Law's Practical Examples for Setting Out Rail-

way Curves. Illustrated with three lithographic plates and numerous

wood-cuts. 8vo. Cloth. 82.50.

C AELTZER. Treatise on Acoustics in Connection with Ventilation.^ With a new theory, based on an important discovery, of facilitating

clear and intelligible sound in any building. By Alexander Saeltzer.

1 2mo. In press.

D URT. Key to the Solar Compass, and Surveyor's Companion ; com-
prising all the Rules necessary for use in the field. By W. A. Burt,

U. S. Deputy Surveyor. Second edition. Pocket-book form, tuck, $2. 50.

IOILLMORE. Coignet Beton and other Artificial Stone. By Q. A.
^-* Gillmore. 9 Plates, Views, &c. Svo, cloth, $2.50.
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AUCHINCLOSS. Application of the Slide Valve and Link Motion
to Stationary, Portable, Locomotive, and Marine Engines, with ne\*

and simple methods for proportioning the parts. By William S
Auchincloss, Civil and Mechanical Engineer. Designed as a hand-
book for Mechanical Engineers, Master Mechanics, Draughtsmen, and
Students of Steam Engineering. All dimensions of the vdve are
found with the greatest ease by means of a Printed Scale, and propor-
tions of the link determined without the assistance of a model. Illus-
trated by S7 woodcuts and 21 lithographic plates, together with a cop-
perplate engraving of the Travel Scale. 1 vol. 8vo. Cloth. $3.

TT UMBER'S STRAINS IN GIRDERS. A Handy Book for the
J- *• Calculation of Strains in Girders and Similar Structures, and their

Strength, consisting of Formula? and Corresponding Diagrams, with
numerous details for practical application. By William Humber.
1 vol. i8mo. Fully illustrated. Cloth. $2.50.

GLYNN ON THE POWER OF WATER, as applied to drive Flour
Mills, and to give motion to Turbines and other Hydrostatic En-

gines. By Joseph Glynn, F. R. S. Third edition, revised and en-
larged, with numerous illustrations. i2mo. Cloth. $1.25.

THE KANSAS CITY BRIDGE, with an Account of the Regimen
of the Missouri River, and a description of the Methods used for

Founding in that River. By O. Chanute, Chief Engineer, and
George Morison, Assistant Engineer. Illustrated with five litho-

graphic views and 1 2 plates of plans. 4 to. Cloth. §6.

TREATISE ON ORE DEPOSITS. By Bernhard Von Cotta,
Professor of Geology in the Royal School of Mines, Freidberg,

Saxony. Translated from the second German edition, by Frederick
Prime, Jr. , Mining Engineer, and revised by the author, with numer-
ous illustrations. 1 vol. 8vo. Cloth, $4.

A TREATISE ON THE RICHARDS STEAM-ENGINE INDICA-
TOR, with directions for its use. ~B? Charles T. Porter.

Revised, with notes and large additions as developed by America a
Practice, with an Appendix containing useful formulae and rules foi

Engineers. By F. W. Bacon, M. E., member of the American
Society of Civil Engineers. i2mo. Illustrated. Cloth. $1

T^HE ART OF GRAINING. How Acquired and How Produced.
A By Charles Pickert and Abraham Metcalf. 8vo. Beautifully Illus-

trated. Tinted paper. In press.

INVESTIGATIONS OF FORMULAS, for the Strength of the" Iron
J. Parts of Steam Machinery. By

J.
D. Van Buren, Jr., C E. 1

vol. 8vo. Illustrated. Cloth, iz.
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THE MECHANIC'S AND STUDENT'S GUIDE in the Designing

and Construction of General Machine Gearing, as Eccentrics,

Screws, Toothed Wheels, etc., and the Drawing of Rectilineal and

Curved Surfaces ; with Practical Rules and Details. Edited by

Francis Herbert Joynson. Illustrated with 18 folded plates. 8vo.

Cloth. $2.00.

"The aim of this work is to he a guide to mechanics in the designing and construction

of general machine-gearing. This design it well fulfils, heing plainly am sensibly written, and

profusely illustrated."—Sunday Times.

FREE-HAND DRAWING - a Guide to Ornamental, Figure, and
Landscape Drawing. By an Art Student. i8mo. Cloth.

75 cents.

THE EARTH'S CRUST : a Handy Outline of Geology. By David
Page. Fourth edition. i8mo. Cloth. 75 cents.

" Such a work as this was much wanted—a work giving in clear and intelligible outline the

leading facts of the science, without amplification or irksome details. It is admirable in

arrangement, and clear and easy, and, at the same time, forcible in style. It will lead, we hope,

to the introduction of Geology into many schools that have neither time nor room for the studry

ef large treatises."— Tlie Hmeum.

HISTORY AND PROGRESS OF THE ELECTRIC TELE-
GRAPH, with Descriptions of some of the Apparatus. By

Robert Sabine, C. E. Second edition, with additions. nmo.
Cloth. $1.75.

TRON TRUSS BRIDGES FOR RAILROADS. The Method of
t- Calculating Strains in Trusses, with a careful comparison of the

most prominent Trusses, in reference to economy in combination, etc,

etc. By Brevet Colonel William E. Merrill, U. S. A., Major
Corps of Engineers. With illustrations. 4C0. Cloth. $$.00.

USEFUL INFORMATION FOR RAILWAY MEN. Compiled
by W. G. Hamilton, Engineer. Fourth edition, revised and

enlarged. 570 pages. Pocket form. Morocco, gilt. $2.00.

REPORT ON MACHINERY AND PROCESSES OF THE IN-
DUSTRIAL ARTS AND APPARATUS, OF THE EXACT

SCIENCES. By F. A. P. Barnard, LL. D.—Paris Universal Ex-
position, 1867. 1 vol., 8vo. Cloth. $5.00.

THE METALS USED IN CONSTRUCTION : Iron, Steel, Bessemei
Metal, etc., etc. By Francis Herbert Joynson. Illustrated,

i2mo. Cloth. 75 cents.

" In the interests of practical science, we are bound to notice this work ; and to thope whr
*dsh further information, we should say, buy it ; and the outlay, we honestly believe, will Iwi

considered well spent."—Scientific Review.

DICTIONARY OF MANUFACTURES, MINING, MACHINERY,
AND THE INDUSTRIAL ARTS. By George Dodd i2mo

Cloth. $2.00.
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SUBMARINE BLASTING in Boston Harbor, Massachusetts-
Removal of Tower and Corwin Rocks. By John G. Foster,

U. S. A. Illustrated with 7 plates. 4to. Cloth. §3. 50.

KIRKWOOD. Report on the Filtration of River Waters, for th«

supply of Cities, as practised in Europe, made to the Board of

Water Commissioners of the City of St. Louis. By James P. Kirk-
wood. Illustrated by 30 double-plate engravings. 4to. Cloth.

$15.00.

I" ECTURE NOTES ON PHYSICS. By' Alfred M. Mayer,
-*—' Ph. D., Professor of Physics in the Lehigh University. 1 vol.

8vo. Cloth. $2.

THE PLANE TABLE, and its Uses in Topographical Surveying.

From the Papers of the U. S. Coast Survey. 8vo. Cloth. $2.

DIEDRICHS. Theory of Strains; a Compendium for the Calcula-

tion and Construction of Bridges, Roofs, and Cranes, with the
application of Trigonometrical Notes. By John Dicdrichs. Illus-

trated by numerous Plates and Diagrams. 8vo, cloth. $5.00.

WILLIAMSON. Practical Tables in Meteorology and Hypsometry,

in connection with the use of the Barometer. By Col. R. S,

Williamson, U. S. A. 1 vol. 4to, flexible cloth. $2.50.

CULLEY. A Hand-Book of Practical Telegraphy. By R. S. Culley.

Engineer to the Electric and International Telegraph Company,
Fourth edition, revised and enlarged. 8vo. Illustrated. Cloth. $5.

n ANDALL'S QUARTZ OPERATOR'S HAND-BOOR By P. M.
*^- Randall. New edition, revised and enlarged. Fully illustrated.

i2mo. Cloth. $2.00.

Z^iOUGE. New System of Ventilation, which has been thoroughly
^-^ tested under the patronage of many distinguished persons. By
Henry A. Gouge. Third edition, enlarged. With many illustrations.

8vo. Cloth. $2. j

PLATTNER'S BLOW-PIPE ANALYSIS. A Complete Guide to

Qualitative and Quantitative Examinations with the Blow-Pipe.

Revised and enlarged by Prof. Richter, Freiberg. Translated from the

latest German edition by Henry B. Cornwall, A. M., E. M. 8vo.

r^RUNER. The Manufacture of Steel. By M. L. Gruner. Translated
^-* from the French by Lenox Smith, A.M., E.M. With an Appendix
on the Bessemer Process in the United States, by the Translator. Illus-

trated. Svo. In press.
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